pyclustering  0.10.1
pyclustring is a Python, C++ data mining library.
pyclustering.cluster.ttsas.ttsas Class Reference

Class represents TTSAS (Two-Threshold Sequential Algorithmic Scheme). More...

+ Inheritance diagram for pyclustering.cluster.ttsas.ttsas:
+ Collaboration diagram for pyclustering.cluster.ttsas.ttsas:

Public Member Functions

def __init__ (self, data, threshold1, threshold2, ccore=True, **kwargs)
 Creates TTSAS algorithm. More...
 
def process (self)
 Performs cluster analysis in line with rules of TTSAS algorithm. More...
 
- Public Member Functions inherited from pyclustering.cluster.bsas.bsas
def get_clusters (self)
 Returns list of allocated clusters, each cluster contains indexes of objects in list of data. More...
 
def get_representatives (self)
 Returns list of representatives of allocated clusters. More...
 
def get_cluster_encoding (self)
 Returns clustering result representation type that indicate how clusters are encoded. More...
 

Detailed Description

Class represents TTSAS (Two-Threshold Sequential Algorithmic Scheme).

Clustering results of BSAS and MBSAS are strongly dependent on the order in which the points in data. TTSAS helps to overcome this shortcoming by using two threshold parameters. The first - if the distance to the nearest cluster is less than the first threshold then point is assigned to the cluster. The second - if distance to the nearest cluster is greater than the second threshold then new cluster is allocated.

Code example of TTSAS usage:

from pyclustering.cluster.bsas import bsas_visualizer
from pyclustering.cluster.ttsas import ttsas
from pyclustering.samples.definitions import SIMPLE_SAMPLES
from pyclustering.utils import read_sample
# Read data sample from 'Simple03.data'.
sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
# Prepare algorithm's parameters.
threshold1 = 1.0
threshold2 = 2.0
# Create instance of TTSAS algorithm.
ttsas_instance = ttsas(sample, threshold1, threshold2)
ttsas_instance.process()
# Get clustering results.
clusters = ttsas_instance.get_clusters()
representatives = ttsas_instance.get_representatives()
# Display results using BSAS visualizer.
bsas_visualizer.show_clusters(sample, clusters, representatives)
See also
pyclustering.cluster.bsas, pyclustering.cluster.mbsas

Definition at line 19 of file ttsas.py.

Constructor & Destructor Documentation

◆ __init__()

def pyclustering.cluster.ttsas.ttsas.__init__ (   self,
  data,
  threshold1,
  threshold2,
  ccore = True,
**  kwargs 
)

Creates TTSAS algorithm.

Parameters
[in]data(list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
[in]threshold1Dissimilarity level (distance) between point and its closest cluster, if the distance is less than 'threshold1' value then point is assigned to the cluster.
[in]threshold2Dissimilarity level (distance) between point and its closest cluster, if the distance is greater than 'threshold2' value then point is considered as a new cluster.
[in]ccore(bool): If True than DLL CCORE (C++ solution) will be used for solving.
[in]**kwargsArbitrary keyword arguments (available arguments: 'metric').

Keyword Args:

  • metric (distance_metric): Metric that is used for distance calculation between two points.

Reimplemented from pyclustering.cluster.bsas.bsas.

Definition at line 58 of file ttsas.py.

Member Function Documentation

◆ process()

def pyclustering.cluster.ttsas.ttsas.process (   self)

Performs cluster analysis in line with rules of TTSAS algorithm.

Returns
(ttsas) Returns itself (TTSAS instance).
See also
get_clusters()
get_representatives()

Reimplemented from pyclustering.cluster.bsas.bsas.

Definition at line 82 of file ttsas.py.


The documentation for this class was generated from the following file:
pyclustering.cluster.ttsas
Cluster analysis algorithm: TTSAS (Two-Threshold Sequential Algorithmic Scheme).
Definition: ttsas.py:1
pyclustering.cluster.bsas
Cluster analysis algorithm: BSAS (Basic Sequential Algorithmic Scheme).
Definition: bsas.py:1
pyclustering.utils
Utils that are used by modules of pyclustering.
Definition: __init__.py:1
pyclustering.utils.read_sample
def read_sample(filename)
Returns data sample from simple text file.
Definition: __init__.py:30