3 @brief Utils that are used by modules of pyclustering. 5 @authors Andrei Novikov (pyclustering@yandex.ru) 7 @copyright GNU Public License 9 @cond GNU_PUBLIC_LICENSE 10 PyClustering is free software: you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation, either version 3 of the License, or 13 (at your option) any later version. 15 PyClustering is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. 30 from numpy
import array
34 except Exception
as error_instance:
35 warnings.warn(
"Impossible to import PIL (please, install 'PIL'), pyclustering's visualization " 36 "functionality is partially not available (details: '%s')." % str(error_instance))
39 import matplotlib.pyplot
as plt
40 from mpl_toolkits.mplot3d
import Axes3D
41 except Exception
as error_instance:
42 warnings.warn(
"Impossible to import matplotlib (please, install 'matplotlib'), pyclustering's visualization " 43 "functionality is not available (details: '%s')." % str(error_instance))
45 from sys
import platform
as _platform
56 @brief Returns data sample from simple text file. 57 @details This function should be used for text file with following format: 59 point_1_coord_1 point_1_coord_2 ... point_1_coord_n 60 point_2_coord_1 point_2_coord_2 ... point_2_coord_n 64 @param[in] filename (string): Path to file with data. 66 @return (list) Points where each point represented by list of coordinates. 70 file = open(filename,
'r') 72 sample = [[float(val) for val
in line.split()]
for line
in file
if len(line.strip()) > 0]
80 @brief Calculates distance matrix for data sample (sequence of points) using Euclidean distance as a metric. 82 @param[in] sample (array_like): Data points that are used for distance calculation. 84 @return (list) Matrix distance between data points. 88 amount_rows = len(sample);
89 return [ [
euclidean_distance(sample[i], sample[j])
for j
in range(amount_rows) ]
for i
in range(amount_rows) ];
94 @brief Returns image as N-dimension (depends on the input image) matrix, where one element of list describes pixel. 96 @param[in] filename (string): Path to image. 98 @return (list) Pixels where each pixel described by list of RGB-values. 102 with Image.open(filename)
as image_source:
103 data = [list(pixel)
for pixel
in image_source.getdata()]
109 @brief Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel. 110 @details Luma coding is used for transformation and that is calculated directly from gamma-compressed primary intensities as a weighted sum: 112 \f[Y = 0.2989R + 0.587G + 0.114B\f] 114 @param[in] image_rgb_array (list): Image represented by RGB list. 116 @return (list) Image as gray colored matrix, where one element of list describes pixel. 119 colored_image = read_image(file_name); 120 gray_image = rgb2gray(colored_image); 127 image_gray_array = [0.0] * len(image_rgb_array);
128 for index
in range(0, len(image_rgb_array), 1):
129 image_gray_array[index] = float(image_rgb_array[index][0]) * 0.2989 + float(image_rgb_array[index][1]) * 0.5870 + float(image_rgb_array[index][2]) * 0.1140;
131 return image_gray_array;
136 @brief Returns stretched content as 1-dimension (gray colored) matrix with size of input image. 138 @param[in] image_source (Image): PIL Image instance. 140 @return (list, Image) Stretched image as gray colored matrix and source image. 143 wsize, hsize = image_source.size;
147 image_source = image_source.crop((ws, hs, we, he));
150 image_source = image_source.resize((wsize, hsize), Image.ANTIALIAS);
153 data = [pixel
for pixel
in image_source.getdata()];
156 return (image_pattern, image_source);
161 @brief Returns coordinates of gray image content on the input image. 163 @param[in] image (Image): PIL Image instance that is processed. 165 @return (tuple) Returns coordinates of gray image content as (width_start, height_start, width_end, height_end). 169 width, height = image.size;
173 height_start = height;
177 for pixel
in image.getdata():
178 value = float(pixel[0]) * 0.2989 + float(pixel[1]) * 0.5870 + float(pixel[2]) * 0.1140;
181 if (width_end < col):
184 if (height_end < row):
187 if (width_start > col):
190 if (height_start > row):
198 return (width_start, height_start, width_end + 1, height_end + 1);
203 @brief Returns average distance for establish links between specified number of nearest neighbors. 205 @param[in] points (list): Input data, list of points where each point represented by list. 206 @param[in] num_neigh (uint): Number of neighbors that should be used for distance calculation. 208 @return (double) Average distance for establish links between 'num_neigh' in data set 'points'. 212 if num_neigh > len(points) - 1:
213 raise NameError(
'Impossible to calculate average distance to neighbors when number of object is less than number of neighbors.');
215 dist_matrix = [ [ 0.0
for i
in range(len(points)) ]
for j
in range(len(points)) ];
216 for i
in range(0, len(points), 1):
217 for j
in range(i + 1, len(points), 1):
219 dist_matrix[i][j] = distance;
220 dist_matrix[j][i] = distance;
222 dist_matrix[i] = sorted(dist_matrix[i]);
225 for i
in range(0, len(points), 1):
227 for j
in range(0, num_neigh, 1):
228 total_distance += dist_matrix[i][j + 1];
230 return ( total_distance / (num_neigh * len(points)) );
235 @brief Calculate centroid of input set of points. 237 @param[in] points (list): Set of points for centroid calculation. 238 @param[in] indexes (list): Indexes of objects in input set of points that will be taken into account during centroid calculation. 240 @return (list) centroid on the set of points where each element of list is corresponding to value in its dimension. 244 dimension = len(points[0]);
245 centroid_value = [0.0] * dimension;
249 range_points = range(len(points));
251 range_points = indexes;
253 for index_point
in range_points:
257 return centroid_value;
260 def median(data, indexes = None, **kwargs):
262 @brief Calculate geometric median of input set of points using Euclidean distance. 264 @param[in] data (list): Set of points for median calculation. 265 @param[in] indexes (list): Indexes of objects in input set of points that will be taken into account during median calculation. 266 @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric', 'data_type'). 268 <b>Keyword Args:</b><br> 269 - metric (distance_metric): Metric that is used for distance calculation between two points. 270 - data_type (string): Data type of input sample 'data' (available values: 'points', 'distance_matrix'). 272 @return (uint) index of point in input set that corresponds to median. 277 distance = float(
'Inf');
279 metric = kwargs.get(
'metric', type_metric.EUCLIDEAN_SQUARE);
280 data_type = kwargs.get(
'data_type',
'points');
282 if data_type ==
'points':
283 calculator =
lambda index1, index2: metric(data[index1], data[index2]);
284 elif data_type ==
'distance_matrix':
285 if isinstance(data, numpy.matrix):
286 calculator =
lambda index1, index2: data.item(index1, index2);
289 calculator =
lambda index1, index2: data[index1][index2];
291 raise TypeError(
"Unknown type of data is specified '%s'." % data_type);
294 range_points = range(len(data));
296 range_points = indexes;
298 for index_candidate
in range_points:
299 distance_candidate = 0.0;
300 for index
in range_points:
301 distance_candidate += calculator(index_candidate, index);
303 if distance_candidate < distance:
304 distance = distance_candidate;
305 index_median = index_candidate;
312 @brief Calculate Euclidean distance between vector a and b. 313 @details The Euclidean between vectors (points) a and b is calculated by following formula: 316 dist(a, b) = \sqrt{ \sum_{i=0}^{N}(b_{i} - a_{i})^{2}) }; 319 Where N is a length of each vector. 321 @param[in] a (list): The first vector. 322 @param[in] b (list): The second vector. 324 @return (double) Euclidian distance between two vectors. 326 @note This function for calculation is faster then standard function in ~100 times! 331 return distance**(0.5);
336 @brief Calculate square Euclidian distance between vector a and b. 338 @param[in] a (list): The first vector. 339 @param[in] b (list): The second vector. 341 @return (double) Square Euclidian distance between two vectors. 345 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
349 for i
in range(0, len(a)):
350 distance += (a[i] - b[i])**2.0;
357 @brief Calculate Manhattan distance between vector a and b. 359 @param[in] a (list): The first cluster. 360 @param[in] b (list): The second cluster. 362 @return (double) Manhattan distance between two vectors. 366 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
372 for i
in range(0, dimension):
373 distance += abs(a[i] - b[i]);
380 @brief Calculates average inter-cluster distance between two clusters. 381 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 382 or by list of indexes of points from the data (represented by list of points), in this case 383 data should be specified. 385 @param[in] cluster1 (list): The first cluster where each element can represent index from the data or object itself. 386 @param[in] cluster2 (list): The second cluster where each element can represent index from the data or object itself. 387 @param[in] data (list): If specified than elements of clusters will be used as indexes, 388 otherwise elements of cluster will be considered as points. 390 @return (double) Average inter-cluster distance between two clusters. 397 for i
in range(len(cluster1)):
398 for j
in range(len(cluster2)):
401 for i
in range(len(cluster1)):
402 for j
in range(len(cluster2)):
405 distance /= float(len(cluster1) * len(cluster2));
406 return distance ** 0.5;
411 @brief Calculates average intra-cluster distance between two clusters. 412 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 413 or by list of indexes of points from the data (represented by list of points), in this case 414 data should be specified. 416 @param[in] cluster1 (list): The first cluster. 417 @param[in] cluster2 (list): The second cluster. 418 @param[in] data (list): If specified than elements of clusters will be used as indexes, 419 otherwise elements of cluster will be considered as points. 421 @return (double) Average intra-cluster distance between two clusters. 427 for i
in range(len(cluster1) + len(cluster2)):
428 for j
in range(len(cluster1) + len(cluster2)):
431 if i < len(cluster1):
432 first_point = cluster1[i]
434 first_point = cluster2[i - len(cluster1)]
437 if j < len(cluster1):
438 second_point = cluster1[j]
440 second_point = cluster2[j - len(cluster1)]
444 if i < len(cluster1):
445 first_point = data[cluster1[i]]
447 first_point = data[cluster2[i - len(cluster1)]]
449 if j < len(cluster1):
450 second_point = data[cluster1[j]]
452 second_point = data[cluster2[j - len(cluster1)]]
456 distance /= float((len(cluster1) + len(cluster2)) * (len(cluster1) + len(cluster2) - 1.0))
457 return distance ** 0.5
462 @brief Calculates variance increase distance between two clusters. 463 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 464 or by list of indexes of points from the data (represented by list of points), in this case 465 data should be specified. 467 @param[in] cluster1 (list): The first cluster. 468 @param[in] cluster2 (list): The second cluster. 469 @param[in] data (list): If specified than elements of clusters will be used as indexes, 470 otherwise elements of cluster will be considered as points. 472 @return (double) Average variance increase distance between two clusters. 478 member_cluster1 = [0.0] * len(cluster1[0])
479 member_cluster2 = [0.0] * len(cluster2[0])
482 member_cluster1 = [0.0] * len(data[0])
483 member_cluster2 = [0.0] * len(data[0])
485 for i
in range(len(cluster1)):
491 for j
in range(len(cluster2)):
504 distance_general = 0.0
505 distance_cluster1 = 0.0
506 distance_cluster2 = 0.0
508 for i
in range(len(cluster1)):
517 for j
in range(len(cluster2)):
526 return distance_general - distance_cluster1 - distance_cluster2
531 @brief Calculates description of ellipse using covariance matrix. 533 @param[in] covariance (numpy.array): Covariance matrix for which ellipse area should be calculated. 534 @param[in] scale (float): Scale of the ellipse. 536 @return (float, float, float) Return ellipse description: angle, width, height. 540 eigh_values, eigh_vectors = numpy.linalg.eigh(covariance)
541 order = eigh_values.argsort()[::-1]
543 values, vectors = eigh_values[order], eigh_vectors[order]
544 angle = numpy.degrees(numpy.arctan2(*vectors[:,0][::-1]))
549 width, height = 2.0 * scale * numpy.sqrt(values)
550 return angle, width, height
555 @brief Finds maximum and minimum corner in each dimension of the specified data. 557 @param[in] data (list): List of points that should be analysed. 558 @param[in] data_filter (list): List of indexes of the data that should be analysed, 559 if it is 'None' then whole 'data' is analysed to obtain corners. 561 @return (list) Tuple of two points that corresponds to minimum and maximum corner (min_corner, max_corner). 565 dimensions = len(data[0])
569 bypass = range(len(data))
571 maximum_corner = list(data[bypass[0]][:])
572 minimum_corner = list(data[bypass[0]][:])
574 for index_point
in bypass:
575 for index_dimension
in range(dimensions):
576 if data[index_point][index_dimension] > maximum_corner[index_dimension]:
577 maximum_corner[index_dimension] = data[index_point][index_dimension]
579 if data[index_point][index_dimension] < minimum_corner[index_dimension]:
580 minimum_corner[index_dimension] = data[index_point][index_dimension]
582 return minimum_corner, maximum_corner
587 @brief Calculates norm of an input vector that is known as a vector length. 589 @param[in] vector (list): The input vector whose length is calculated. 591 @return (double) vector norm known as vector length. 596 for component
in vector:
597 length += component * component
599 length = length ** 0.5
606 @brief Calculates unit vector. 607 @details Unit vector calculates of an input vector involves two steps. 608 The first, calculate vector length. The second, 609 divide each vector component by the obtained length. 611 @param[in] vector (list): The input vector that is used for unit vector calculation. 616 unit_vector_instance = [];
618 for component
in vector:
619 unit_vector_instance.append(component / length);
621 return unit_vector_instance;
626 @brief Calculates Heaviside function that represents step function. 627 @details If input value is greater than 0 then returns 1, otherwise returns 0. 629 @param[in] value (double): Argument of Heaviside function. 631 @return (double) Value of Heaviside function. 642 @brief Executes specified method or function with measuring of execution time. 644 @param[in] executable_function (pointer): Pointer to function or method. 645 @param[in] args (*): Arguments of called function or method. 647 @return (tuple) Execution time and result of execution of function or method (execution_time, result_execution). 651 time_start = time.clock();
652 result = executable_function(*args);
653 time_end = time.clock();
655 return (time_end - time_start, result);
660 @brief Extracts number of oscillations of specified oscillator. 662 @param[in] osc_dyn (list): Dynamic of oscillators. 663 @param[in] index (uint): Index of oscillator in dynamic. 664 @param[in] amplitude_threshold (double): Amplitude threshold when oscillation is taken into account, for example, 665 when oscillator amplitude is greater than threshold then oscillation is incremented. 667 @return (uint) Number of oscillations of specified oscillator. 671 number_oscillations = 0;
672 waiting_differential =
False;
673 threshold_passed =
False;
674 high_level_trigger =
True if (osc_dyn[0][index] > amplitude_threshold)
else False;
676 for values
in osc_dyn:
677 if ( (values[index] >= amplitude_threshold)
and (high_level_trigger
is False) ):
678 high_level_trigger =
True;
679 threshold_passed =
True;
681 elif ( (values[index] < amplitude_threshold)
and (high_level_trigger
is True) ):
682 high_level_trigger =
False;
683 threshold_passed =
True;
685 if (threshold_passed
is True):
686 threshold_passed =
False;
687 if (waiting_differential
is True and high_level_trigger
is False):
688 number_oscillations += 1;
689 waiting_differential =
False;
692 waiting_differential =
True;
694 return number_oscillations;
699 @brief Allocate clusters in line with ensembles of synchronous oscillators where each 700 synchronous ensemble corresponds to only one cluster. 702 @param[in] dynamic (dynamic): Dynamic of each oscillator. 703 @param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators. 704 @param[in] threshold (double): Amlitude trigger when spike is taken into account. 705 @param[in] ignore (bool): Set of indexes that shouldn't be taken into account. 707 @return (list) Grours (lists) of indexes of synchronous oscillators, for example, 708 [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ]. 712 descriptors = [ []
for _
in range(len(dynamic[0])) ];
715 for index_dyn
in range(0, len(dynamic[0]), 1):
716 if ((ignore
is not None)
and (index_dyn
in ignore)):
719 time_stop_simulation = len(dynamic) - 1;
720 active_state =
False;
722 if (dynamic[time_stop_simulation][index_dyn] > threshold):
726 if (active_state
is True):
727 while ( (dynamic[time_stop_simulation][index_dyn] > threshold)
and (time_stop_simulation > 0) ):
728 time_stop_simulation -= 1;
731 if (time_stop_simulation == 0):
735 active_state =
False;
738 for t
in range(time_stop_simulation, 0, -1):
739 if ( (dynamic[t][index_dyn] > threshold)
and (active_state
is False) ):
742 elif ( (dynamic[t][index_dyn] < threshold)
and (active_state
is True) ):
744 active_state =
False;
748 if (desc == [0, 0, 0]):
751 desc[2] = desc[1] + (desc[0] - desc[1]) / 2.0;
752 descriptors[index_dyn] = desc;
757 desc_sync_ensembles = [];
759 for index_desc
in range(0, len(descriptors), 1):
760 if (descriptors[index_desc] == []):
763 if (len(sync_ensembles) == 0):
764 desc_ensemble = descriptors[index_desc];
765 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
767 desc_ensemble[0] = desc_ensemble[2] + reducer;
768 desc_ensemble[1] = desc_ensemble[2] - reducer;
770 desc_sync_ensembles.append(desc_ensemble);
771 sync_ensembles.append([ index_desc ]);
773 oscillator_captured =
False;
774 for index_ensemble
in range(0, len(sync_ensembles), 1):
775 if ( (desc_sync_ensembles[index_ensemble][0] > descriptors[index_desc][2])
and (desc_sync_ensembles[index_ensemble][1] < descriptors[index_desc][2])):
776 sync_ensembles[index_ensemble].append(index_desc);
777 oscillator_captured =
True;
780 if (oscillator_captured
is False):
781 desc_ensemble = descriptors[index_desc];
782 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
784 desc_ensemble[0] = desc_ensemble[2] + reducer;
785 desc_ensemble[1] = desc_ensemble[2] - reducer;
787 desc_sync_ensembles.append(desc_ensemble);
788 sync_ensembles.append([ index_desc ]);
790 return sync_ensembles;
793 def draw_clusters(data, clusters, noise = [], marker_descr = '.', hide_axes = False, axes = None, display_result = True):
795 @brief Displays clusters for data in 2D or 3D. 797 @param[in] data (list): Points that are described by coordinates represented. 798 @param[in] clusters (list): Clusters that are represented by lists of indexes where each index corresponds to point in data. 799 @param[in] noise (list): Points that are regarded to noise. 800 @param[in] marker_descr (string): Marker for displaying points. 801 @param[in] hide_axes (bool): If True - axes is not displayed. 802 @param[in] axes (ax) Matplotlib axes where clusters should be drawn, if it is not specified (None) then new plot will be created. 803 @param[in] display_result (bool): If specified then matplotlib axes will be used for drawing and plot will not be shown. 805 @return (ax) Matplotlib axes where drawn clusters are presented. 810 if ( (data
is not None)
and (clusters
is not None) ):
811 dimension = len(data[0]);
812 elif ( (data
is None)
and (clusters
is not None) ):
813 dimension = len(clusters[0][0]);
815 raise NameError(
'Data or clusters should be specified exactly.');
818 colors = [
'red',
'blue',
'darkgreen',
'brown',
'violet',
819 'deepskyblue',
'darkgrey',
'lightsalmon',
'deeppink',
'yellow',
820 'black',
'mediumspringgreen',
'orange',
'darkviolet',
'darkblue',
821 'silver',
'lime',
'pink',
'gold',
'bisque' ];
823 if (len(clusters) > len(colors)):
824 raise NameError(
'Impossible to represent clusters due to number of specified colors.');
830 if ((dimension) == 1
or (dimension == 2)):
831 axes = fig.add_subplot(111);
832 elif (dimension == 3):
833 axes = fig.gca(projection=
'3d');
835 raise NameError(
'Drawer supports only 2d and 3d data representation');
838 for cluster
in clusters:
839 color = colors[color_index];
843 axes.plot(item[0], 0.0, color = color, marker = marker_descr);
845 axes.plot(data[item][0], 0.0, color = color, marker = marker_descr);
849 axes.plot(item[0], item[1], color = color, marker = marker_descr);
851 axes.plot(data[item][0], data[item][1], color = color, marker = marker_descr);
853 elif (dimension == 3):
855 axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr);
857 axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr);
864 axes.plot(item[0], 0.0,
'w' + marker_descr);
866 axes.plot(data[item][0], 0.0,
'w' + marker_descr);
870 axes.plot(item[0], item[1],
'w' + marker_descr);
872 axes.plot(data[item][0], data[item][1],
'w' + marker_descr);
874 elif (dimension == 3):
876 axes.scatter(item[0], item[1], item[2], c =
'w', marker = marker_descr);
878 axes.scatter(data[item][0], data[item][1], data[item][2], c =
'w', marker = marker_descr);
882 if (hide_axes
is True):
883 axes.xaxis.set_ticklabels([]);
884 axes.yaxis.set_ticklabels([]);
887 axes.zaxis.set_ticklabels([]);
889 if (display_result
is True):
895 def draw_dynamics(t, dyn, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, separate = False, axes = None):
897 @brief Draw dynamics of neurons (oscillators) in the network. 898 @details It draws if matplotlib is not specified (None), othewise it should be performed manually. 900 @param[in] t (list): Values of time (used by x axis). 901 @param[in] dyn (list): Values of output of oscillators (used by y axis). 902 @param[in] x_title (string): Title for Y. 903 @param[in] y_title (string): Title for X. 904 @param[in] x_lim (double): X limit. 905 @param[in] y_lim (double): Y limit. 906 @param[in] x_labels (bool): If True - shows X labels. 907 @param[in] y_labels (bool): If True - shows Y labels. 908 @param[in] separate (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage. 909 @param[in] axes (ax): If specified then matplotlib axes will be used for drawing and plot will not be shown. 911 @return (ax) Axes of matplotlib. 918 if (x_lim
is not None):
921 stage_xlim = [0, t[len(t) - 1]];
923 if ( (isinstance(separate, bool)
is True)
and (separate
is True) ):
924 if (isinstance(dyn[0], list)
is True):
925 number_lines = len(dyn[0]);
929 elif (isinstance(separate, list)
is True):
930 number_lines = len(separate);
935 dysplay_result =
False;
937 dysplay_result =
True;
938 (fig, axes) = plt.subplots(number_lines, 1);
941 if (isinstance(dyn[0], list)
is True):
942 num_items = len(dyn[0]);
943 for index
in range(0, num_items, 1):
944 y = [item[index]
for item
in dyn];
946 if (number_lines > 1):
950 if (isinstance(separate, bool)
is True):
953 elif (isinstance(separate, list)
is True):
954 for index_group
in range(0, len(separate), 1):
955 if (index
in separate[index_group]):
956 index_stage = index_group;
959 if (index_stage != -1):
960 if (index_stage != number_lines - 1):
961 axes[index_stage].get_xaxis().set_visible(
False);
963 axes[index_stage].plot(t, y,
'b-', linewidth = 0.5);
964 set_ax_param(axes[index_stage], x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
967 axes.plot(t, y,
'b-', linewidth = 0.5);
968 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
970 axes.plot(t, dyn,
'b-', linewidth = 0.5);
971 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
973 if (dysplay_result
is True):
979 def set_ax_param(ax, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, grid = True):
981 @brief Sets parameters for matplotlib ax. 983 @param[in] ax (Axes): Axes for which parameters should applied. 984 @param[in] x_title (string): Title for Y. 985 @param[in] y_title (string): Title for X. 986 @param[in] x_lim (double): X limit. 987 @param[in] y_lim (double): Y limit. 988 @param[in] x_labels (bool): If True - shows X labels. 989 @param[in] y_labels (bool): If True - shows Y labels. 990 @param[in] grid (bool): If True - shows grid. 993 from matplotlib.font_manager
import FontProperties;
994 from matplotlib
import rcParams;
996 if (_platform ==
"linux")
or (_platform ==
"linux2"):
997 rcParams[
'font.sans-serif'] = [
'Liberation Serif'];
999 rcParams[
'font.sans-serif'] = [
'Arial'];
1001 rcParams[
'font.size'] = 12;
1003 surface_font = FontProperties();
1004 if (_platform ==
"linux")
or (_platform ==
"linux2"):
1005 surface_font.set_name(
'Liberation Serif');
1007 surface_font.set_name(
'Arial');
1009 surface_font.set_size(
'12');
1011 if (y_title
is not None): ax.set_ylabel(y_title, fontproperties = surface_font);
1012 if (x_title
is not None): ax.set_xlabel(x_title, fontproperties = surface_font);
1014 if (x_lim
is not None): ax.set_xlim(x_lim[0], x_lim[1]);
1015 if (y_lim
is not None): ax.set_ylim(y_lim[0], y_lim[1]);
1017 if (x_labels
is False): ax.xaxis.set_ticklabels([]);
1018 if (y_labels
is False): ax.yaxis.set_ticklabels([]);
1023 def draw_dynamics_set(dynamics, xtitle = None, ytitle = None, xlim = None, ylim = None, xlabels = False, ylabels = False):
1025 @brief Draw lists of dynamics of neurons (oscillators) in the network. 1027 @param[in] dynamics (list): List of network outputs that are represented by values of output of oscillators (used by y axis). 1028 @param[in] xtitle (string): Title for Y. 1029 @param[in] ytitle (string): Title for X. 1030 @param[in] xlim (double): X limit. 1031 @param[in] ylim (double): Y limit. 1032 @param[in] xlabels (bool): If True - shows X labels. 1033 @param[in] ylabels (bool): If True - shows Y labels. 1037 number_dynamics = len(dynamics);
1038 if (number_dynamics == 1):
1039 draw_dynamics(dynamics[0][0], dynamics[0][1], xtitle, ytitle, xlim, ylim, xlabels, ylabels);
1042 number_cols = int(numpy.ceil(number_dynamics ** 0.5));
1043 number_rows = int(numpy.ceil(number_dynamics / number_cols));
1046 double_indexer =
True;
1047 if ( (number_cols == 1)
or (number_rows == 1) ):
1049 double_indexer =
False;
1051 (_, axarr) = plt.subplots(number_rows, number_cols);
1054 for dynamic
in dynamics:
1055 axarr[real_index] =
draw_dynamics(dynamic[0], dynamic[1], xtitle, ytitle, xlim, ylim, xlabels, ylabels, axes = axarr[real_index]);
1058 if (double_indexer
is True):
1059 real_index = real_index[0], real_index[1] + 1;
1060 if (real_index[1] >= number_cols):
1061 real_index = real_index[0] + 1, 0;
1070 @brief Shows image segments using colored image. 1071 @details Each color on result image represents allocated segment. The first image is initial and other is result of segmentation. 1073 @param[in] source (string): Path to image. 1074 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1075 consists of indexes of pixel from source image. 1076 @param[in] hide_axes (bool): If True then axes will not be displayed. 1080 image_source = Image.open(source);
1081 image_size = image_source.size;
1083 (fig, axarr) = plt.subplots(1, 2);
1085 plt.setp([ax
for ax
in axarr], visible =
False);
1087 available_colors = [ (0, 162, 232), (34, 177, 76), (237, 28, 36),
1088 (255, 242, 0), (0, 0, 0), (237, 28, 36),
1089 (255, 174, 201), (127, 127, 127), (185, 122, 87),
1090 (200, 191, 231), (136, 0, 21), (255, 127, 39),
1091 (63, 72, 204), (195, 195, 195), (255, 201, 14),
1092 (239, 228, 176), (181, 230, 29), (153, 217, 234),
1095 image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1]);
1097 for index_segment
in range(len(clusters)):
1098 for index_pixel
in clusters[index_segment]:
1099 image_color_segments[index_pixel] = available_colors[index_segment];
1101 stage = array(image_color_segments, numpy.uint8);
1102 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),));
1103 image_cluster = Image.fromarray(stage,
'RGB');
1105 axarr[0].imshow(image_source, interpolation =
'none');
1106 axarr[1].imshow(image_cluster, interpolation =
'none');
1109 plt.setp(axarr[i], visible =
True);
1111 if (hide_axes
is True):
1112 axarr[i].xaxis.set_ticklabels([]);
1113 axarr[i].yaxis.set_ticklabels([]);
1114 axarr[i].xaxis.set_ticks_position(
'none');
1115 axarr[i].yaxis.set_ticks_position(
'none');
1122 @brief Shows image segments using black masks. 1123 @details Each black mask of allocated segment is presented on separate plot. 1124 The first image is initial and others are black masks of segments. 1126 @param[in] source (string): Path to image. 1127 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1128 consists of indexes of pixel from source image. 1129 @param[in] hide_axes (bool): If True then axes will not be displayed. 1132 if (len(clusters) == 0):
1133 print(
"Warning: Nothing to draw - list of clusters is empty.")
1136 image_source = Image.open(source);
1137 image_size = image_source.size;
1140 number_clusters = len(clusters) + 1;
1142 number_cols = int(numpy.ceil(number_clusters ** 0.5));
1143 number_rows = int(numpy.ceil(number_clusters / number_cols));
1147 double_indexer =
True;
1148 if ( (number_cols == 1)
or (number_rows == 1) ):
1150 double_indexer =
False;
1152 (fig, axarr) = plt.subplots(number_rows, number_cols);
1153 plt.setp([ax
for ax
in axarr], visible =
False);
1155 axarr[real_index].imshow(image_source, interpolation =
'none');
1156 plt.setp(axarr[real_index], visible =
True);
1158 if (hide_axes
is True):
1159 axarr[real_index].xaxis.set_ticklabels([]);
1160 axarr[real_index].yaxis.set_ticklabels([]);
1161 axarr[real_index].xaxis.set_ticks_position(
'none');
1162 axarr[real_index].yaxis.set_ticks_position(
'none');
1164 if (double_indexer
is True):
1169 for cluster
in clusters:
1170 stage_cluster = [(255, 255, 255)] * (image_size[0] * image_size[1]);
1171 for index
in cluster:
1172 stage_cluster[index] = (0, 0, 0);
1174 stage = array(stage_cluster, numpy.uint8);
1175 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),));
1177 image_cluster = Image.fromarray(stage,
'RGB');
1179 axarr[real_index].imshow(image_cluster, interpolation =
'none');
1180 plt.setp(axarr[real_index], visible =
True);
1182 if (hide_axes
is True):
1183 axarr[real_index].xaxis.set_ticklabels([]);
1184 axarr[real_index].yaxis.set_ticklabels([]);
1186 axarr[real_index].xaxis.set_ticks_position(
'none');
1187 axarr[real_index].yaxis.set_ticks_position(
'none');
1189 if (double_indexer
is True):
1190 real_index = real_index[0], real_index[1] + 1;
1191 if (real_index[1] >= number_cols):
1192 real_index = real_index[0] + 1, 0;
1202 @brief Calculates linear sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1204 @param[in] list_vector (list): Input vector. 1206 @return (list|double) Linear sum of vector that can be represented by list in case of multidimensional elements. 1211 list_representation = (type(list_vector[0]) == list);
1213 if (list_representation
is True):
1214 dimension = len(list_vector[0]);
1215 linear_sum = [0] * dimension;
1217 for index_element
in range(0, len(list_vector)):
1218 if (list_representation
is True):
1219 for index_dimension
in range(0, dimension):
1220 linear_sum[index_dimension] += list_vector[index_element][index_dimension];
1222 linear_sum += list_vector[index_element];
1229 @brief Calculates square sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1231 @param[in] list_vector (list): Input vector. 1233 @return (double) Square sum of vector. 1238 list_representation = (type(list_vector[0]) == list);
1240 for index_element
in range(0, len(list_vector)):
1241 if (list_representation
is True):
1244 square_sum += list_vector[index_element] * list_vector[index_element];
1251 @brief Calculates subtraction of two lists. 1252 @details Each element from list 'a' is subtracted by element from list 'b' accordingly. 1254 @param[in] a (list): List of elements that supports mathematical subtraction. 1255 @param[in] b (list): List of elements that supports mathematical subtraction. 1257 @return (list) Results of subtraction of two lists. 1260 return [a[i] - b[i]
for i
in range(len(a))];
1265 @brief Calculates subtraction between list and number. 1266 @details Each element from list 'a' is subtracted by number 'b'. 1268 @param[in] a (list): List of elements that supports mathematical subtraction. 1269 @param[in] b (list): Value that supports mathematical subtraction. 1271 @return (list) Results of subtraction between list and number. 1274 return [a[i] - b
for i
in range(len(a))];
1279 @brief Addition of two lists. 1280 @details Each element from list 'a' is added to element from list 'b' accordingly. 1282 @param[in] a (list): List of elements that supports mathematic addition.. 1283 @param[in] b (list): List of elements that supports mathematic addition.. 1285 @return (list) Results of addtion of two lists. 1288 return [a[i] + b[i]
for i
in range(len(a))];
1293 @brief Addition between list and number. 1294 @details Each element from list 'a' is added to number 'b'. 1296 @param[in] a (list): List of elements that supports mathematic addition. 1297 @param[in] b (double): Value that supports mathematic addition. 1299 @return (list) Result of addtion of two lists. 1302 return [a[i] + b
for i
in range(len(a))];
1307 @brief Division between list and number. 1308 @details Each element from list 'a' is divided by number 'b'. 1310 @param[in] a (list): List of elements that supports mathematic division. 1311 @param[in] b (double): Value that supports mathematic division. 1313 @return (list) Result of division between list and number. 1316 return [a[i] / b
for i
in range(len(a))];
1321 @brief Division of two lists. 1322 @details Each element from list 'a' is divided by element from list 'b' accordingly. 1324 @param[in] a (list): List of elements that supports mathematic division. 1325 @param[in] b (list): List of elements that supports mathematic division. 1327 @return (list) Result of division of two lists. 1330 return [a[i] / b[i]
for i
in range(len(a))];
1335 @brief Multiplication between list and number. 1336 @details Each element from list 'a' is multiplied by number 'b'. 1338 @param[in] a (list): List of elements that supports mathematic division. 1339 @param[in] b (double): Number that supports mathematic division. 1341 @return (list) Result of division between list and number. 1344 return [a[i] * b
for i
in range(len(a))];
1349 @brief Multiplication of two lists. 1350 @details Each element from list 'a' is multiplied by element from list 'b' accordingly. 1352 @param[in] a (list): List of elements that supports mathematic multiplication. 1353 @param[in] b (list): List of elements that supports mathematic multiplication. 1355 @return (list) Result of multiplication of elements in two lists. 1358 return [a[i] * b[i]
for i
in range(len(a))];
def euclidean_distance(a, b)
Calculate Euclidean distance between vector a and b.
def square_sum(list_vector)
Calculates square sum of vector that is represented by list, each element can be represented by list ...
def draw_clusters(data, clusters, noise=[], marker_descr='.', hide_axes=False, axes=None, display_result=True)
Displays clusters for data in 2D or 3D.
def heaviside(value)
Calculates Heaviside function that represents step function.
def manhattan_distance(a, b)
Calculate Manhattan distance between vector a and b.
def read_image(filename)
Returns image as N-dimension (depends on the input image) matrix, where one element of list describes...
Module provides various distance metrics - abstraction of the notion of distance in a metric space...
def average_intra_cluster_distance(cluster1, cluster2, data=None)
Calculates average intra-cluster distance between two clusters.
def list_math_multiplication_number(a, b)
Multiplication between list and number.
def extract_number_oscillations(osc_dyn, index=0, amplitude_threshold=1.0)
Extracts number of oscillations of specified oscillator.
def list_math_division(a, b)
Division of two lists.
def list_math_multiplication(a, b)
Multiplication of two lists.
def allocate_sync_ensembles(dynamic, tolerance=0.1, threshold=1.0, ignore=None)
Allocate clusters in line with ensembles of synchronous oscillators where each synchronous ensemble c...
def average_neighbor_distance(points, num_neigh)
Returns average distance for establish links between specified number of nearest neighbors.
def average_inter_cluster_distance(cluster1, cluster2, data=None)
Calculates average inter-cluster distance between two clusters.
def timedcall(executable_function, args)
Executes specified method or function with measuring of execution time.
def read_sample(filename)
Returns data sample from simple text file.
def draw_image_color_segments(source, clusters, hide_axes=True)
Shows image segments using colored image.
def norm_vector(vector)
Calculates norm of an input vector that is known as a vector length.
def unit_vector(vector)
Calculates unit vector.
def list_math_substraction_number(a, b)
Calculates subtraction between list and number.
def stretch_pattern(image_source)
Returns stretched content as 1-dimension (gray colored) matrix with size of input image...
def draw_dynamics_set(dynamics, xtitle=None, ytitle=None, xlim=None, ylim=None, xlabels=False, ylabels=False)
Draw lists of dynamics of neurons (oscillators) in the network.
def draw_dynamics(t, dyn, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, separate=False, axes=None)
Draw dynamics of neurons (oscillators) in the network.
def data_corners(data, data_filter=None)
Finds maximum and minimum corner in each dimension of the specified data.
def calculate_distance_matrix(sample)
Calculates distance matrix for data sample (sequence of points) using Euclidean distance as a metric...
def list_math_addition(a, b)
Addition of two lists.
def calculate_ellipse_description(covariance, scale=2.0)
Calculates description of ellipse using covariance matrix.
def euclidean_distance_square(a, b)
Calculate square Euclidian distance between vector a and b.
def gray_pattern_borders(image)
Returns coordinates of gray image content on the input image.
def list_math_division_number(a, b)
Division between list and number.
def linear_sum(list_vector)
Calculates linear sum of vector that is represented by list, each element can be represented by list ...
def set_ax_param(ax, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, grid=True)
Sets parameters for matplotlib ax.
def draw_image_mask_segments(source, clusters, hide_axes=True)
Shows image segments using black masks.
def list_math_subtraction(a, b)
Calculates subtraction of two lists.
def centroid(points, indexes=None)
Calculate centroid of input set of points.
def list_math_addition_number(a, b)
Addition between list and number.
def variance_increase_distance(cluster1, cluster2, data=None)
Calculates variance increase distance between two clusters.
def median(data, indexes=None, kwargs)
Calculate geometric median of input set of points using Euclidean distance.
def rgb2gray(image_rgb_array)
Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel...