3 @brief Utils that are used by modules of pyclustering. 5 @authors Andrei Novikov (pyclustering@yandex.ru) 7 @copyright GNU Public License 9 @cond GNU_PUBLIC_LICENSE 10 PyClustering is free software: you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation, either version 3 of the License, or 13 (at your option) any later version. 15 PyClustering is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. 30 from numpy
import array
34 except Exception
as error_instance:
35 warnings.warn(
"Impossible to import PIL (please, install 'PIL'), pyclustering's visualization " 36 "functionality is partially not available (details: '%s')." % str(error_instance))
39 import matplotlib.pyplot
as plt
40 from mpl_toolkits.mplot3d
import Axes3D
41 except Exception
as error_instance:
42 warnings.warn(
"Impossible to import matplotlib (please, install 'matplotlib'), pyclustering's visualization " 43 "functionality is not available (details: '%s')." % str(error_instance))
45 from sys
import platform
as _platform
56 @brief Returns data sample from simple text file. 57 @details This function should be used for text file with following format: 59 point_1_coord_1 point_1_coord_2 ... point_1_coord_n 60 point_2_coord_1 point_2_coord_2 ... point_2_coord_n 64 @param[in] filename (string): Path to file with data. 66 @return (list) Points where each point represented by list of coordinates. 70 file = open(filename,
'r') 72 sample = [[float(val) for val
in line.split()]
for line
in file
if len(line.strip()) > 0]
80 @brief Calculates distance matrix for data sample (sequence of points) using specified metric (by default Euclidean distance). 82 @param[in] sample (array_like): Data points that are used for distance calculation. 83 @param[in] metric (distance_metric): Metric that is used for distance calculation between two points. 85 @return (list) Matrix distance between data points. 89 amount_rows = len(sample)
90 return [[metric(sample[i], sample[j])
for j
in range(amount_rows)]
for i
in range(amount_rows)]
95 @brief Returns image as N-dimension (depends on the input image) matrix, where one element of list describes pixel. 97 @param[in] filename (string): Path to image. 99 @return (list) Pixels where each pixel described by list of RGB-values. 103 with Image.open(filename)
as image_source:
104 data = [list(pixel)
for pixel
in image_source.getdata()]
110 @brief Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel. 111 @details Luma coding is used for transformation and that is calculated directly from gamma-compressed primary intensities as a weighted sum: 113 \f[Y = 0.2989R + 0.587G + 0.114B\f] 115 @param[in] image_rgb_array (list): Image represented by RGB list. 117 @return (list) Image as gray colored matrix, where one element of list describes pixel. 120 colored_image = read_image(file_name); 121 gray_image = rgb2gray(colored_image); 128 image_gray_array = [0.0] * len(image_rgb_array);
129 for index
in range(0, len(image_rgb_array), 1):
130 image_gray_array[index] = float(image_rgb_array[index][0]) * 0.2989 + float(image_rgb_array[index][1]) * 0.5870 + float(image_rgb_array[index][2]) * 0.1140;
132 return image_gray_array;
137 @brief Returns stretched content as 1-dimension (gray colored) matrix with size of input image. 139 @param[in] image_source (Image): PIL Image instance. 141 @return (list, Image) Stretched image as gray colored matrix and source image. 144 wsize, hsize = image_source.size;
148 image_source = image_source.crop((ws, hs, we, he));
151 image_source = image_source.resize((wsize, hsize), Image.ANTIALIAS);
154 data = [pixel
for pixel
in image_source.getdata()];
157 return (image_pattern, image_source);
162 @brief Returns coordinates of gray image content on the input image. 164 @param[in] image (Image): PIL Image instance that is processed. 166 @return (tuple) Returns coordinates of gray image content as (width_start, height_start, width_end, height_end). 170 width, height = image.size;
174 height_start = height;
178 for pixel
in image.getdata():
179 value = float(pixel[0]) * 0.2989 + float(pixel[1]) * 0.5870 + float(pixel[2]) * 0.1140;
182 if (width_end < col):
185 if (height_end < row):
188 if (width_start > col):
191 if (height_start > row):
199 return (width_start, height_start, width_end + 1, height_end + 1);
204 @brief Returns average distance for establish links between specified number of nearest neighbors. 206 @param[in] points (list): Input data, list of points where each point represented by list. 207 @param[in] num_neigh (uint): Number of neighbors that should be used for distance calculation. 209 @return (double) Average distance for establish links between 'num_neigh' in data set 'points'. 213 if num_neigh > len(points) - 1:
214 raise NameError(
'Impossible to calculate average distance to neighbors when number of object is less than number of neighbors.');
216 dist_matrix = [ [ 0.0
for i
in range(len(points)) ]
for j
in range(len(points)) ];
217 for i
in range(0, len(points), 1):
218 for j
in range(i + 1, len(points), 1):
220 dist_matrix[i][j] = distance;
221 dist_matrix[j][i] = distance;
223 dist_matrix[i] = sorted(dist_matrix[i]);
226 for i
in range(0, len(points), 1):
228 for j
in range(0, num_neigh, 1):
229 total_distance += dist_matrix[i][j + 1];
231 return ( total_distance / (num_neigh * len(points)) );
234 def medoid(data, indexes=None, **kwargs):
236 @brief Calculate medoid for input points using Euclidean distance. 238 @param[in] data (list): Set of points for that median should be calculated. 239 @param[in] indexes (list): Indexes of input set of points that will be taken into account during median calculation. 240 @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric', 'data_type'). 242 <b>Keyword Args:</b><br> 243 - metric (distance_metric): Metric that is used for distance calculation between two points. 244 - data_type (string): Data type of input sample 'data' (available values: 'points', 'distance_matrix'). 246 @return (uint) index of point in input set that corresponds to median. 251 distance = float(
'Inf')
253 metric = kwargs.get(
'metric', type_metric.EUCLIDEAN_SQUARE)
254 data_type = kwargs.get(
'data_type',
'points')
256 if data_type ==
'points':
257 calculator =
lambda index1, index2: metric(data[index1], data[index2])
258 elif data_type ==
'distance_matrix':
259 if isinstance(data, numpy.matrix):
260 calculator =
lambda index1, index2: data.item(index1, index2)
263 calculator =
lambda index1, index2: data[index1][index2]
265 raise TypeError(
"Unknown type of data is specified '%s'." % data_type)
268 range_points = range(len(data))
270 range_points = indexes
272 for index_candidate
in range_points:
273 distance_candidate = 0.0
274 for index
in range_points:
275 distance_candidate += calculator(index_candidate, index)
277 if distance_candidate < distance:
278 distance = distance_candidate
279 index_median = index_candidate
286 @brief Calculate Euclidean distance between vector a and b. 287 @details The Euclidean between vectors (points) a and b is calculated by following formula: 290 dist(a, b) = \sqrt{ \sum_{i=0}^{N}(b_{i} - a_{i})^{2}) }; 293 Where N is a length of each vector. 295 @param[in] a (list): The first vector. 296 @param[in] b (list): The second vector. 298 @return (double) Euclidian distance between two vectors. 300 @note This function for calculation is faster then standard function in ~100 times! 305 return distance**(0.5);
310 @brief Calculate square Euclidian distance between vector a and b. 312 @param[in] a (list): The first vector. 313 @param[in] b (list): The second vector. 315 @return (double) Square Euclidian distance between two vectors. 319 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
323 for i
in range(0, len(a)):
324 distance += (a[i] - b[i])**2.0;
331 @brief Calculate Manhattan distance between vector a and b. 333 @param[in] a (list): The first cluster. 334 @param[in] b (list): The second cluster. 336 @return (double) Manhattan distance between two vectors. 340 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
346 for i
in range(0, dimension):
347 distance += abs(a[i] - b[i]);
354 @brief Calculates average inter-cluster distance between two clusters. 355 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 356 or by list of indexes of points from the data (represented by list of points), in this case 357 data should be specified. 359 @param[in] cluster1 (list): The first cluster where each element can represent index from the data or object itself. 360 @param[in] cluster2 (list): The second cluster where each element can represent index from the data or object itself. 361 @param[in] data (list): If specified than elements of clusters will be used as indexes, 362 otherwise elements of cluster will be considered as points. 364 @return (double) Average inter-cluster distance between two clusters. 371 for i
in range(len(cluster1)):
372 for j
in range(len(cluster2)):
375 for i
in range(len(cluster1)):
376 for j
in range(len(cluster2)):
379 distance /= float(len(cluster1) * len(cluster2));
380 return distance ** 0.5;
385 @brief Calculates average intra-cluster distance between two clusters. 386 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 387 or by list of indexes of points from the data (represented by list of points), in this case 388 data should be specified. 390 @param[in] cluster1 (list): The first cluster. 391 @param[in] cluster2 (list): The second cluster. 392 @param[in] data (list): If specified than elements of clusters will be used as indexes, 393 otherwise elements of cluster will be considered as points. 395 @return (double) Average intra-cluster distance between two clusters. 401 for i
in range(len(cluster1) + len(cluster2)):
402 for j
in range(len(cluster1) + len(cluster2)):
405 if i < len(cluster1):
406 first_point = cluster1[i]
408 first_point = cluster2[i - len(cluster1)]
411 if j < len(cluster1):
412 second_point = cluster1[j]
414 second_point = cluster2[j - len(cluster1)]
418 if i < len(cluster1):
419 first_point = data[cluster1[i]]
421 first_point = data[cluster2[i - len(cluster1)]]
423 if j < len(cluster1):
424 second_point = data[cluster1[j]]
426 second_point = data[cluster2[j - len(cluster1)]]
430 distance /= float((len(cluster1) + len(cluster2)) * (len(cluster1) + len(cluster2) - 1.0))
431 return distance ** 0.5
436 @brief Calculates variance increase distance between two clusters. 437 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 438 or by list of indexes of points from the data (represented by list of points), in this case 439 data should be specified. 441 @param[in] cluster1 (list): The first cluster. 442 @param[in] cluster2 (list): The second cluster. 443 @param[in] data (list): If specified than elements of clusters will be used as indexes, 444 otherwise elements of cluster will be considered as points. 446 @return (double) Average variance increase distance between two clusters. 452 member_cluster1 = [0.0] * len(cluster1[0])
453 member_cluster2 = [0.0] * len(cluster2[0])
456 member_cluster1 = [0.0] * len(data[0])
457 member_cluster2 = [0.0] * len(data[0])
459 for i
in range(len(cluster1)):
465 for j
in range(len(cluster2)):
478 distance_general = 0.0
479 distance_cluster1 = 0.0
480 distance_cluster2 = 0.0
482 for i
in range(len(cluster1)):
491 for j
in range(len(cluster2)):
500 return distance_general - distance_cluster1 - distance_cluster2
505 @brief Calculates description of ellipse using covariance matrix. 507 @param[in] covariance (numpy.array): Covariance matrix for which ellipse area should be calculated. 508 @param[in] scale (float): Scale of the ellipse. 510 @return (float, float, float) Return ellipse description: angle, width, height. 514 eigh_values, eigh_vectors = numpy.linalg.eigh(covariance)
515 order = eigh_values.argsort()[::-1]
517 values, vectors = eigh_values[order], eigh_vectors[order]
518 angle = numpy.degrees(numpy.arctan2(*vectors[:,0][::-1]))
523 width, height = 2.0 * scale * numpy.sqrt(values)
524 return angle, width, height
529 @brief Finds maximum and minimum corner in each dimension of the specified data. 531 @param[in] data (list): List of points that should be analysed. 532 @param[in] data_filter (list): List of indexes of the data that should be analysed, 533 if it is 'None' then whole 'data' is analysed to obtain corners. 535 @return (list) Tuple of two points that corresponds to minimum and maximum corner (min_corner, max_corner). 539 dimensions = len(data[0])
543 bypass = range(len(data))
545 maximum_corner = list(data[bypass[0]][:])
546 minimum_corner = list(data[bypass[0]][:])
548 for index_point
in bypass:
549 for index_dimension
in range(dimensions):
550 if data[index_point][index_dimension] > maximum_corner[index_dimension]:
551 maximum_corner[index_dimension] = data[index_point][index_dimension]
553 if data[index_point][index_dimension] < minimum_corner[index_dimension]:
554 minimum_corner[index_dimension] = data[index_point][index_dimension]
556 return minimum_corner, maximum_corner
561 @brief Calculates norm of an input vector that is known as a vector length. 563 @param[in] vector (list): The input vector whose length is calculated. 565 @return (double) vector norm known as vector length. 570 for component
in vector:
571 length += component * component
573 length = length ** 0.5
580 @brief Calculates Heaviside function that represents step function. 581 @details If input value is greater than 0 then returns 1, otherwise returns 0. 583 @param[in] value (double): Argument of Heaviside function. 585 @return (double) Value of Heaviside function. 596 @brief Executes specified method or function with measuring of execution time. 598 @param[in] executable_function (pointer): Pointer to function or method. 599 @param[in] args (*): Arguments of called function or method. 601 @return (tuple) Execution time and result of execution of function or method (execution_time, result_execution). 605 time_start = time.clock();
606 result = executable_function(*args);
607 time_end = time.clock();
609 return (time_end - time_start, result);
614 @brief Extracts number of oscillations of specified oscillator. 616 @param[in] osc_dyn (list): Dynamic of oscillators. 617 @param[in] index (uint): Index of oscillator in dynamic. 618 @param[in] amplitude_threshold (double): Amplitude threshold when oscillation is taken into account, for example, 619 when oscillator amplitude is greater than threshold then oscillation is incremented. 621 @return (uint) Number of oscillations of specified oscillator. 625 number_oscillations = 0;
626 waiting_differential =
False;
627 threshold_passed =
False;
628 high_level_trigger =
True if (osc_dyn[0][index] > amplitude_threshold)
else False;
630 for values
in osc_dyn:
631 if ( (values[index] >= amplitude_threshold)
and (high_level_trigger
is False) ):
632 high_level_trigger =
True;
633 threshold_passed =
True;
635 elif ( (values[index] < amplitude_threshold)
and (high_level_trigger
is True) ):
636 high_level_trigger =
False;
637 threshold_passed =
True;
639 if (threshold_passed
is True):
640 threshold_passed =
False;
641 if (waiting_differential
is True and high_level_trigger
is False):
642 number_oscillations += 1;
643 waiting_differential =
False;
646 waiting_differential =
True;
648 return number_oscillations;
653 @brief Allocate clusters in line with ensembles of synchronous oscillators where each 654 synchronous ensemble corresponds to only one cluster. 656 @param[in] dynamic (dynamic): Dynamic of each oscillator. 657 @param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators. 658 @param[in] threshold (double): Amlitude trigger when spike is taken into account. 659 @param[in] ignore (bool): Set of indexes that shouldn't be taken into account. 661 @return (list) Grours (lists) of indexes of synchronous oscillators, for example, 662 [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ]. 666 descriptors = [ []
for _
in range(len(dynamic[0])) ];
669 for index_dyn
in range(0, len(dynamic[0]), 1):
670 if ((ignore
is not None)
and (index_dyn
in ignore)):
673 time_stop_simulation = len(dynamic) - 1;
674 active_state =
False;
676 if (dynamic[time_stop_simulation][index_dyn] > threshold):
680 if (active_state
is True):
681 while ( (dynamic[time_stop_simulation][index_dyn] > threshold)
and (time_stop_simulation > 0) ):
682 time_stop_simulation -= 1;
685 if (time_stop_simulation == 0):
689 active_state =
False;
692 for t
in range(time_stop_simulation, 0, -1):
693 if ( (dynamic[t][index_dyn] > threshold)
and (active_state
is False) ):
696 elif ( (dynamic[t][index_dyn] < threshold)
and (active_state
is True) ):
698 active_state =
False;
702 if (desc == [0, 0, 0]):
705 desc[2] = desc[1] + (desc[0] - desc[1]) / 2.0;
706 descriptors[index_dyn] = desc;
711 desc_sync_ensembles = [];
713 for index_desc
in range(0, len(descriptors), 1):
714 if (descriptors[index_desc] == []):
717 if (len(sync_ensembles) == 0):
718 desc_ensemble = descriptors[index_desc];
719 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
721 desc_ensemble[0] = desc_ensemble[2] + reducer;
722 desc_ensemble[1] = desc_ensemble[2] - reducer;
724 desc_sync_ensembles.append(desc_ensemble);
725 sync_ensembles.append([ index_desc ]);
727 oscillator_captured =
False;
728 for index_ensemble
in range(0, len(sync_ensembles), 1):
729 if ( (desc_sync_ensembles[index_ensemble][0] > descriptors[index_desc][2])
and (desc_sync_ensembles[index_ensemble][1] < descriptors[index_desc][2])):
730 sync_ensembles[index_ensemble].append(index_desc);
731 oscillator_captured =
True;
734 if (oscillator_captured
is False):
735 desc_ensemble = descriptors[index_desc];
736 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
738 desc_ensemble[0] = desc_ensemble[2] + reducer;
739 desc_ensemble[1] = desc_ensemble[2] - reducer;
741 desc_sync_ensembles.append(desc_ensemble);
742 sync_ensembles.append([ index_desc ]);
744 return sync_ensembles;
747 def draw_clusters(data, clusters, noise = [], marker_descr = '.', hide_axes = False, axes = None, display_result = True):
749 @brief Displays clusters for data in 2D or 3D. 751 @param[in] data (list): Points that are described by coordinates represented. 752 @param[in] clusters (list): Clusters that are represented by lists of indexes where each index corresponds to point in data. 753 @param[in] noise (list): Points that are regarded to noise. 754 @param[in] marker_descr (string): Marker for displaying points. 755 @param[in] hide_axes (bool): If True - axes is not displayed. 756 @param[in] axes (ax) Matplotlib axes where clusters should be drawn, if it is not specified (None) then new plot will be created. 757 @param[in] display_result (bool): If specified then matplotlib axes will be used for drawing and plot will not be shown. 759 @return (ax) Matplotlib axes where drawn clusters are presented. 764 if ( (data
is not None)
and (clusters
is not None) ):
765 dimension = len(data[0]);
766 elif ( (data
is None)
and (clusters
is not None) ):
767 dimension = len(clusters[0][0]);
769 raise NameError(
'Data or clusters should be specified exactly.');
772 colors = [
'red',
'blue',
'darkgreen',
'brown',
'violet',
773 'deepskyblue',
'darkgrey',
'lightsalmon',
'deeppink',
'yellow',
774 'black',
'mediumspringgreen',
'orange',
'darkviolet',
'darkblue',
775 'silver',
'lime',
'pink',
'gold',
'bisque' ];
777 if (len(clusters) > len(colors)):
778 raise NameError(
'Impossible to represent clusters due to number of specified colors.');
784 if ((dimension) == 1
or (dimension == 2)):
785 axes = fig.add_subplot(111);
786 elif (dimension == 3):
787 axes = fig.gca(projection=
'3d');
789 raise NameError(
'Drawer supports only 2d and 3d data representation');
792 for cluster
in clusters:
793 color = colors[color_index];
797 axes.plot(item[0], 0.0, color = color, marker = marker_descr);
799 axes.plot(data[item][0], 0.0, color = color, marker = marker_descr);
803 axes.plot(item[0], item[1], color = color, marker = marker_descr);
805 axes.plot(data[item][0], data[item][1], color = color, marker = marker_descr);
807 elif (dimension == 3):
809 axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr);
811 axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr);
818 axes.plot(item[0], 0.0,
'w' + marker_descr);
820 axes.plot(data[item][0], 0.0,
'w' + marker_descr);
824 axes.plot(item[0], item[1],
'w' + marker_descr);
826 axes.plot(data[item][0], data[item][1],
'w' + marker_descr);
828 elif (dimension == 3):
830 axes.scatter(item[0], item[1], item[2], c =
'w', marker = marker_descr);
832 axes.scatter(data[item][0], data[item][1], data[item][2], c =
'w', marker = marker_descr);
836 if (hide_axes
is True):
837 axes.xaxis.set_ticklabels([]);
838 axes.yaxis.set_ticklabels([]);
841 axes.zaxis.set_ticklabels([]);
843 if (display_result
is True):
849 def draw_dynamics(t, dyn, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, separate = False, axes = None):
851 @brief Draw dynamics of neurons (oscillators) in the network. 852 @details It draws if matplotlib is not specified (None), othewise it should be performed manually. 854 @param[in] t (list): Values of time (used by x axis). 855 @param[in] dyn (list): Values of output of oscillators (used by y axis). 856 @param[in] x_title (string): Title for Y. 857 @param[in] y_title (string): Title for X. 858 @param[in] x_lim (double): X limit. 859 @param[in] y_lim (double): Y limit. 860 @param[in] x_labels (bool): If True - shows X labels. 861 @param[in] y_labels (bool): If True - shows Y labels. 862 @param[in] separate (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage. 863 @param[in] axes (ax): If specified then matplotlib axes will be used for drawing and plot will not be shown. 865 @return (ax) Axes of matplotlib. 872 if (x_lim
is not None):
875 stage_xlim = [0, t[len(t) - 1]];
877 if ( (isinstance(separate, bool)
is True)
and (separate
is True) ):
878 if (isinstance(dyn[0], list)
is True):
879 number_lines = len(dyn[0]);
883 elif (isinstance(separate, list)
is True):
884 number_lines = len(separate);
889 dysplay_result =
False;
891 dysplay_result =
True;
892 (fig, axes) = plt.subplots(number_lines, 1);
895 if (isinstance(dyn[0], list)
is True):
896 num_items = len(dyn[0]);
897 for index
in range(0, num_items, 1):
898 y = [item[index]
for item
in dyn];
900 if (number_lines > 1):
904 if (isinstance(separate, bool)
is True):
907 elif (isinstance(separate, list)
is True):
908 for index_group
in range(0, len(separate), 1):
909 if (index
in separate[index_group]):
910 index_stage = index_group;
913 if (index_stage != -1):
914 if (index_stage != number_lines - 1):
915 axes[index_stage].get_xaxis().set_visible(
False);
917 axes[index_stage].plot(t, y,
'b-', linewidth = 0.5);
918 set_ax_param(axes[index_stage], x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
921 axes.plot(t, y,
'b-', linewidth = 0.5);
922 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
924 axes.plot(t, dyn,
'b-', linewidth = 0.5);
925 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
927 if (dysplay_result
is True):
933 def set_ax_param(ax, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, grid = True):
935 @brief Sets parameters for matplotlib ax. 937 @param[in] ax (Axes): Axes for which parameters should applied. 938 @param[in] x_title (string): Title for Y. 939 @param[in] y_title (string): Title for X. 940 @param[in] x_lim (double): X limit. 941 @param[in] y_lim (double): Y limit. 942 @param[in] x_labels (bool): If True - shows X labels. 943 @param[in] y_labels (bool): If True - shows Y labels. 944 @param[in] grid (bool): If True - shows grid. 947 from matplotlib.font_manager
import FontProperties;
948 from matplotlib
import rcParams;
950 if (_platform ==
"linux")
or (_platform ==
"linux2"):
951 rcParams[
'font.sans-serif'] = [
'Liberation Serif'];
953 rcParams[
'font.sans-serif'] = [
'Arial'];
955 rcParams[
'font.size'] = 12;
957 surface_font = FontProperties();
958 if (_platform ==
"linux")
or (_platform ==
"linux2"):
959 surface_font.set_name(
'Liberation Serif');
961 surface_font.set_name(
'Arial');
963 surface_font.set_size(
'12');
965 if (y_title
is not None): ax.set_ylabel(y_title, fontproperties = surface_font);
966 if (x_title
is not None): ax.set_xlabel(x_title, fontproperties = surface_font);
968 if (x_lim
is not None): ax.set_xlim(x_lim[0], x_lim[1]);
969 if (y_lim
is not None): ax.set_ylim(y_lim[0], y_lim[1]);
971 if (x_labels
is False): ax.xaxis.set_ticklabels([]);
972 if (y_labels
is False): ax.yaxis.set_ticklabels([]);
977 def draw_dynamics_set(dynamics, xtitle = None, ytitle = None, xlim = None, ylim = None, xlabels = False, ylabels = False):
979 @brief Draw lists of dynamics of neurons (oscillators) in the network. 981 @param[in] dynamics (list): List of network outputs that are represented by values of output of oscillators (used by y axis). 982 @param[in] xtitle (string): Title for Y. 983 @param[in] ytitle (string): Title for X. 984 @param[in] xlim (double): X limit. 985 @param[in] ylim (double): Y limit. 986 @param[in] xlabels (bool): If True - shows X labels. 987 @param[in] ylabels (bool): If True - shows Y labels. 991 number_dynamics = len(dynamics);
992 if (number_dynamics == 1):
993 draw_dynamics(dynamics[0][0], dynamics[0][1], xtitle, ytitle, xlim, ylim, xlabels, ylabels);
996 number_cols = int(numpy.ceil(number_dynamics ** 0.5));
997 number_rows = int(numpy.ceil(number_dynamics / number_cols));
1000 double_indexer =
True;
1001 if ( (number_cols == 1)
or (number_rows == 1) ):
1003 double_indexer =
False;
1005 (_, axarr) = plt.subplots(number_rows, number_cols);
1008 for dynamic
in dynamics:
1009 axarr[real_index] =
draw_dynamics(dynamic[0], dynamic[1], xtitle, ytitle, xlim, ylim, xlabels, ylabels, axes = axarr[real_index]);
1012 if (double_indexer
is True):
1013 real_index = real_index[0], real_index[1] + 1;
1014 if (real_index[1] >= number_cols):
1015 real_index = real_index[0] + 1, 0;
1024 @brief Shows image segments using colored image. 1025 @details Each color on result image represents allocated segment. The first image is initial and other is result of segmentation. 1027 @param[in] source (string): Path to image. 1028 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1029 consists of indexes of pixel from source image. 1030 @param[in] hide_axes (bool): If True then axes will not be displayed. 1034 image_source = Image.open(source);
1035 image_size = image_source.size;
1037 (fig, axarr) = plt.subplots(1, 2);
1039 plt.setp([ax
for ax
in axarr], visible =
False);
1041 available_colors = [ (0, 162, 232), (34, 177, 76), (237, 28, 36),
1042 (255, 242, 0), (0, 0, 0), (237, 28, 36),
1043 (255, 174, 201), (127, 127, 127), (185, 122, 87),
1044 (200, 191, 231), (136, 0, 21), (255, 127, 39),
1045 (63, 72, 204), (195, 195, 195), (255, 201, 14),
1046 (239, 228, 176), (181, 230, 29), (153, 217, 234),
1049 image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1]);
1051 for index_segment
in range(len(clusters)):
1052 for index_pixel
in clusters[index_segment]:
1053 image_color_segments[index_pixel] = available_colors[index_segment];
1055 stage = array(image_color_segments, numpy.uint8);
1056 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),));
1057 image_cluster = Image.fromarray(stage,
'RGB');
1059 axarr[0].imshow(image_source, interpolation =
'none');
1060 axarr[1].imshow(image_cluster, interpolation =
'none');
1063 plt.setp(axarr[i], visible =
True);
1065 if (hide_axes
is True):
1066 axarr[i].xaxis.set_ticklabels([]);
1067 axarr[i].yaxis.set_ticklabels([]);
1068 axarr[i].xaxis.set_ticks_position(
'none');
1069 axarr[i].yaxis.set_ticks_position(
'none');
1076 @brief Shows image segments using black masks. 1077 @details Each black mask of allocated segment is presented on separate plot. 1078 The first image is initial and others are black masks of segments. 1080 @param[in] source (string): Path to image. 1081 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1082 consists of indexes of pixel from source image. 1083 @param[in] hide_axes (bool): If True then axes will not be displayed. 1086 if (len(clusters) == 0):
1087 print(
"Warning: Nothing to draw - list of clusters is empty.")
1090 image_source = Image.open(source);
1091 image_size = image_source.size;
1094 number_clusters = len(clusters) + 1;
1096 number_cols = int(numpy.ceil(number_clusters ** 0.5));
1097 number_rows = int(numpy.ceil(number_clusters / number_cols));
1101 double_indexer =
True;
1102 if ( (number_cols == 1)
or (number_rows == 1) ):
1104 double_indexer =
False;
1106 (fig, axarr) = plt.subplots(number_rows, number_cols);
1107 plt.setp([ax
for ax
in axarr], visible =
False);
1109 axarr[real_index].imshow(image_source, interpolation =
'none');
1110 plt.setp(axarr[real_index], visible =
True);
1112 if (hide_axes
is True):
1113 axarr[real_index].xaxis.set_ticklabels([]);
1114 axarr[real_index].yaxis.set_ticklabels([]);
1115 axarr[real_index].xaxis.set_ticks_position(
'none');
1116 axarr[real_index].yaxis.set_ticks_position(
'none');
1118 if (double_indexer
is True):
1123 for cluster
in clusters:
1124 stage_cluster = [(255, 255, 255)] * (image_size[0] * image_size[1]);
1125 for index
in cluster:
1126 stage_cluster[index] = (0, 0, 0);
1128 stage = array(stage_cluster, numpy.uint8);
1129 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),));
1131 image_cluster = Image.fromarray(stage,
'RGB');
1133 axarr[real_index].imshow(image_cluster, interpolation =
'none');
1134 plt.setp(axarr[real_index], visible =
True);
1136 if (hide_axes
is True):
1137 axarr[real_index].xaxis.set_ticklabels([]);
1138 axarr[real_index].yaxis.set_ticklabels([]);
1140 axarr[real_index].xaxis.set_ticks_position(
'none');
1141 axarr[real_index].yaxis.set_ticks_position(
'none');
1143 if (double_indexer
is True):
1144 real_index = real_index[0], real_index[1] + 1;
1145 if (real_index[1] >= number_cols):
1146 real_index = real_index[0] + 1, 0;
1156 @brief Calculates linear sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1158 @param[in] list_vector (list): Input vector. 1160 @return (list|double) Linear sum of vector that can be represented by list in case of multidimensional elements. 1165 list_representation = (type(list_vector[0]) == list)
1167 if list_representation
is True:
1168 dimension = len(list_vector[0])
1169 linear_sum = [0] * dimension
1171 for index_element
in range(0, len(list_vector)):
1172 if (list_representation
is True):
1173 for index_dimension
in range(0, dimension):
1174 linear_sum[index_dimension] += list_vector[index_element][index_dimension]
1176 linear_sum += list_vector[index_element]
1183 @brief Calculates square sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1185 @param[in] list_vector (list): Input vector. 1187 @return (double) Square sum of vector. 1192 list_representation = (type(list_vector[0]) == list)
1194 for index_element
in range(0, len(list_vector)):
1195 if list_representation
is True:
1198 square_sum += list_vector[index_element] * list_vector[index_element]
1205 @brief Calculates subtraction of two lists. 1206 @details Each element from list 'a' is subtracted by element from list 'b' accordingly. 1208 @param[in] a (list): List of elements that supports mathematical subtraction. 1209 @param[in] b (list): List of elements that supports mathematical subtraction. 1211 @return (list) Results of subtraction of two lists. 1214 return [a[i] - b[i]
for i
in range(len(a))];
1219 @brief Calculates subtraction between list and number. 1220 @details Each element from list 'a' is subtracted by number 'b'. 1222 @param[in] a (list): List of elements that supports mathematical subtraction. 1223 @param[in] b (list): Value that supports mathematical subtraction. 1225 @return (list) Results of subtraction between list and number. 1228 return [a[i] - b
for i
in range(len(a))];
1233 @brief Addition of two lists. 1234 @details Each element from list 'a' is added to element from list 'b' accordingly. 1236 @param[in] a (list): List of elements that supports mathematic addition.. 1237 @param[in] b (list): List of elements that supports mathematic addition.. 1239 @return (list) Results of addtion of two lists. 1242 return [a[i] + b[i]
for i
in range(len(a))];
1247 @brief Addition between list and number. 1248 @details Each element from list 'a' is added to number 'b'. 1250 @param[in] a (list): List of elements that supports mathematic addition. 1251 @param[in] b (double): Value that supports mathematic addition. 1253 @return (list) Result of addtion of two lists. 1256 return [a[i] + b
for i
in range(len(a))];
1261 @brief Division between list and number. 1262 @details Each element from list 'a' is divided by number 'b'. 1264 @param[in] a (list): List of elements that supports mathematic division. 1265 @param[in] b (double): Value that supports mathematic division. 1267 @return (list) Result of division between list and number. 1270 return [a[i] / b
for i
in range(len(a))];
1275 @brief Division of two lists. 1276 @details Each element from list 'a' is divided by element from list 'b' accordingly. 1278 @param[in] a (list): List of elements that supports mathematic division. 1279 @param[in] b (list): List of elements that supports mathematic division. 1281 @return (list) Result of division of two lists. 1284 return [a[i] / b[i]
for i
in range(len(a))];
1289 @brief Multiplication between list and number. 1290 @details Each element from list 'a' is multiplied by number 'b'. 1292 @param[in] a (list): List of elements that supports mathematic division. 1293 @param[in] b (double): Number that supports mathematic division. 1295 @return (list) Result of division between list and number. 1298 return [a[i] * b
for i
in range(len(a))];
1303 @brief Multiplication of two lists. 1304 @details Each element from list 'a' is multiplied by element from list 'b' accordingly. 1306 @param[in] a (list): List of elements that supports mathematic multiplication. 1307 @param[in] b (list): List of elements that supports mathematic multiplication. 1309 @return (list) Result of multiplication of elements in two lists. 1312 return [a[i] * b[i]
for i
in range(len(a))];
def euclidean_distance(a, b)
Calculate Euclidean distance between vector a and b.
def square_sum(list_vector)
Calculates square sum of vector that is represented by list, each element can be represented by list ...
def draw_clusters(data, clusters, noise=[], marker_descr='.', hide_axes=False, axes=None, display_result=True)
Displays clusters for data in 2D or 3D.
def heaviside(value)
Calculates Heaviside function that represents step function.
def manhattan_distance(a, b)
Calculate Manhattan distance between vector a and b.
def read_image(filename)
Returns image as N-dimension (depends on the input image) matrix, where one element of list describes...
Module provides various distance metrics - abstraction of the notion of distance in a metric space...
def average_intra_cluster_distance(cluster1, cluster2, data=None)
Calculates average intra-cluster distance between two clusters.
def list_math_multiplication_number(a, b)
Multiplication between list and number.
def extract_number_oscillations(osc_dyn, index=0, amplitude_threshold=1.0)
Extracts number of oscillations of specified oscillator.
def list_math_division(a, b)
Division of two lists.
def list_math_multiplication(a, b)
Multiplication of two lists.
def allocate_sync_ensembles(dynamic, tolerance=0.1, threshold=1.0, ignore=None)
Allocate clusters in line with ensembles of synchronous oscillators where each synchronous ensemble c...
def average_neighbor_distance(points, num_neigh)
Returns average distance for establish links between specified number of nearest neighbors.
def average_inter_cluster_distance(cluster1, cluster2, data=None)
Calculates average inter-cluster distance between two clusters.
def timedcall(executable_function, args)
Executes specified method or function with measuring of execution time.
def read_sample(filename)
Returns data sample from simple text file.
def draw_image_color_segments(source, clusters, hide_axes=True)
Shows image segments using colored image.
def norm_vector(vector)
Calculates norm of an input vector that is known as a vector length.
def list_math_substraction_number(a, b)
Calculates subtraction between list and number.
def stretch_pattern(image_source)
Returns stretched content as 1-dimension (gray colored) matrix with size of input image...
def draw_dynamics_set(dynamics, xtitle=None, ytitle=None, xlim=None, ylim=None, xlabels=False, ylabels=False)
Draw lists of dynamics of neurons (oscillators) in the network.
def draw_dynamics(t, dyn, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, separate=False, axes=None)
Draw dynamics of neurons (oscillators) in the network.
def data_corners(data, data_filter=None)
Finds maximum and minimum corner in each dimension of the specified data.
def list_math_addition(a, b)
Addition of two lists.
def calculate_ellipse_description(covariance, scale=2.0)
Calculates description of ellipse using covariance matrix.
def euclidean_distance_square(a, b)
Calculate square Euclidian distance between vector a and b.
def gray_pattern_borders(image)
Returns coordinates of gray image content on the input image.
def list_math_division_number(a, b)
Division between list and number.
def linear_sum(list_vector)
Calculates linear sum of vector that is represented by list, each element can be represented by list ...
def medoid(data, indexes=None, kwargs)
Calculate medoid for input points using Euclidean distance.
def calculate_distance_matrix(sample, metric=distance_metric(type_metric.EUCLIDEAN))
Calculates distance matrix for data sample (sequence of points) using specified metric (by default Eu...
def set_ax_param(ax, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, grid=True)
Sets parameters for matplotlib ax.
def draw_image_mask_segments(source, clusters, hide_axes=True)
Shows image segments using black masks.
def list_math_subtraction(a, b)
Calculates subtraction of two lists.
def list_math_addition_number(a, b)
Addition between list and number.
def variance_increase_distance(cluster1, cluster2, data=None)
Calculates variance increase distance between two clusters.
def rgb2gray(image_rgb_array)
Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel...