Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 Cpyclustering.cluster.agglomerative.agglomerativeClass represents agglomerative algorithm for cluster analysis
 Cpyclustering.samples.answer_readerAnswer reader for samples that are used by pyclustering library
 Cpyclustering.cluster.bang.bangClass implements BANG grid based clustering algorithm
 Cpyclustering.cluster.bang.bang_animatorProvides service for creating 2-D animation using BANG clustering results
 Cpyclustering.cluster.bang.bang_blockBANG-block that represent spatial region in data space
 Cpyclustering.cluster.bang.bang_directoryBANG directory stores BANG-blocks that represents grid in data space
 Cpyclustering.cluster.bang.bang_visualizerVisualizer of BANG algorithm's results
 Cpyclustering.cluster.birch.birchClass represents the clustering algorithm BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
 Cpyclustering.cluster.bsas.bsasClass represents BSAS clustering algorithm - basic sequential algorithmic scheme
 Cpyclustering.cluster.bsas.bsas_visualizerVisualizer of BSAS algorithm's results
 Cpyclustering.cluster.canvas_cluster_descrDescription of cluster for representation on canvas
 Cpyclustering.nnet.dynamic_visualizer.canvas_descrDescribes plot where dynamic is displayed
 Cpyclustering.nnet.hhn.central_elementCentral element consist of two central neurons that are described by a little bit different dynamic than peripheral
 Cpyclustering.container.cftree.cfentryClustering feature representation
 Cpyclustering.container.cftree.cfnodeRepresentation of node of CF-Tree
 Cpyclustering.container.cftree.cftreeCF-Tree representation
 Cpyclustering.cluster.clarans.claransClass represents clustering algorithm CLARANS (a method for clustering objects for spatial data mining)
 Cpyclustering.cluster.clique.cliqueClass implements CLIQUE grid based clustering algorithm
 Cpyclustering.cluster.clique.clique_blockCLIQUE block contains information about its logical location in grid, spatial location in data space and points that are covered by the block
 Cpyclustering.cluster.clique.clique_visualizerVisualizer of CLIQUE algorithm's results
 Cpyclustering.cluster.encoder.cluster_encoderProvides service to change clustering result representation
 Cpyclustering.cluster.cluster_visualizerCommon visualizer of clusters on 1D, 2D or 3D surface
 Cpyclustering.cluster.cluster_visualizer_multidimVisualizer for cluster in multi-dimensional data
 Cpyclustering.nnet.cnn.cnn_dynamicContainer of output dynamic of the chaotic neural network where states of each neuron during simulation are stored
 Cpyclustering.nnet.cnn.cnn_networkChaotic neural network based on system of logistic map where clustering phenomenon can be observed
 Cpyclustering.nnet.cnn.cnn_visualizerVisualizer of output dynamic of chaotic neural network (CNN)
 Cpyclustering.utils.color.colorConsists titles of colors that are used by pyclustering for visualization
 Cpyclustering.cluster.clique.coordinate_iteratorCoordinate iterator is used to generate logical location description for each CLIQUE block
 Cpyclustering.cluster.cure.cureClass represents clustering algorithm CURE with KD-tree optimization
 Cpyclustering.cluster.cure.cure_clusterRepresents data cluster in CURE term
 Cpyclustering.cluster.generator.data_generatorData generator provides services to generate data with clusters with normal distribution
 Cpyclustering.cluster.dbscan.dbscanClass represents clustering algorithm DBSCAN
 Cpyclustering.utils.metric.distance_metricDistance metric performs distance calculation between two points in line with encapsulated function, for example, euclidean distance or chebyshev distance, or even user-defined
 Cpyclustering.gcolor.dsatur.dsaturRepresents DSATUR algorithm for graph coloring problem that uses greedy strategy
 Cpyclustering.nnet.dynamic_visualizer.dynamic_descrOutput dynamic description that used to display
 Cpyclustering.nnet.dynamic_visualizer.dynamic_visualizerBasic output dynamic visualizer
 Cpyclustering.cluster.elbow.elbowClass represents Elbow method that is used to find out appropriate amount of clusters in a dataset
 Cpyclustering.cluster.ema.emaExpectation-Maximization clustering algorithm for Gaussian Mixture Model (GMM)
 Cpyclustering.cluster.ema.ema_initializerProvides servies for preparing initial means and covariances for Expectation-Maximization algorithm
 Cpyclustering.cluster.ema.ema_observerObserver of EM algorithm for collecting algorithm state on each step
 Cpyclustering.cluster.ema.ema_visualizerVisualizer of EM algorithm's results
 Cpyclustering.cluster.fcm.fcmClass represents Fuzzy C-means (FCM) clustering algorithm
 Cpyclustering.nnet.fsync.fsync_dynamicRepresents output dynamic of Sync in frequency domain
 Cpyclustering.nnet.fsync.fsync_visualizerVisualizer of output dynamic of sync network in frequency domain
 Cpyclustering.cluster.ga.ga_observerGenetic algorithm observer that is used to collect information about clustering process on each iteration
 Cpyclustering.cluster.ga.ga_visualizerGenetic algorithm visualizer is used to show clustering results that are specific for this particular algorithm: clusters, evolution of global and local optimum
 Cpyclustering.cluster.ga.genetic_algorithmClass represents Genetic clustering algorithm
 Cpyclustering.cluster.gmeans.gmeansClass implements G-Means clustering algorithm
 Cpyclustering.utils.graph.graphGraph representation
 Cpyclustering.nnet.hhn.hhn_parametersDescribes parameters of Hodgkin-Huxley Oscillatory Network
 Cpyclustering.nnet.hysteresis.hysteresis_dynamicRepresents output dynamic of hysteresis oscillatory network
 Cpyclustering.nnet.hysteresis.hysteresis_visualizerVisualizer of output dynamic of hysteresis oscillatory network
 Cpyclustering.container.kdtree.kdtreeRepresents KD Tree that is a space-partitioning data structure for organizing points in a k-dimensional space
 Cpyclustering.container.kdtree.kdtree_text_visualizerKD-tree text visualizer that provides service to diplay tree structure using text representation
 Cpyclustering.cluster.kmeans.kmeansClass implements K-Means clustering algorithm
 Cpyclustering.cluster.kmeans.kmeans_observerObserver of K-Means algorithm that is used to collect information about clustering process on each iteration of the algorithm
 Cpyclustering.cluster.center_initializer.kmeans_plusplus_initializerK-Means++ is an algorithm for choosing the initial centers for algorithms like K-Means or X-Means
 Cpyclustering.cluster.kmeans.kmeans_visualizerVisualizer of K-Means algorithm's results
 Cpyclustering.cluster.kmedians.kmediansClass represents clustering algorithm K-Medians
 Cpyclustering.cluster.kmedoids.kmedoidsClass represents clustering algorithm K-Medoids
 Cpyclustering.nnet.legion.legion_dynamicRepresents output dynamic of LEGION
 Cpyclustering.nnet.legion.legion_parametersDescribes parameters of LEGION
 Cpyclustering.nnet.networkCommon network description that consists of information about oscillators and connection between them
 Cpyclustering.container.kdtree.nodeRepresents node of KD-Tree
 Cpyclustering.cluster.optics.opticsClass represents clustering algorithm OPTICS (Ordering Points To Identify Clustering Structure) with KD-tree optimization (ccore options is supported)
 Cpyclustering.cluster.optics.optics_descriptorObject description that used by OPTICS algorithm for cluster analysis
 Cpyclustering.nnet.sync.order_estimatorProvides services to calculate order parameter and local order parameter that are used for synchronization level estimation
 Cpyclustering.cluster.optics.ordering_analyserAnalyser of cluster ordering diagram
 Cpyclustering.cluster.optics.ordering_visualizerCluster ordering diagram visualizer that represents dataset graphically as density-based clustering structure
 Cpyclustering.nnet.pcnn.pcnn_dynamicRepresents output dynamic of PCNN (pulse-coupled neural network)
 Cpyclustering.nnet.pcnn.pcnn_parametersParameters for pulse coupled neural network
 Cpyclustering.nnet.pcnn.pcnn_visualizerVisualizer of output dynamic of pulse-coupled neural network (PCNN)
 Cpyclustering.cluster.center_initializer.random_center_initializerRandom center initializer is for generation specified amount of random of centers for specified data
 Cpyclustering.cluster.rock.rockClass represents clustering algorithm ROCK
 Cpyclustering.cluster.silhouette.silhouetteRepresents Silhouette method that is used interpretation and validation of consistency
 Cpyclustering.cluster.silhouette.silhouette_ksearchRepresent algorithm for searching optimal number of clusters using specified K-algorithm (K-Means, K-Medians, K-Medoids) that is based on Silhouette method
 Cpyclustering.nnet.som.somRepresents self-organized feature map (SOM)
 Cpyclustering.nnet.som.som_parametersRepresents SOM parameters
 Cpyclustering.cluster.somsc.somscClass represents simple clustering algorithm based on self-organized feature map
 Cpyclustering.cluster.clique.spatial_blockGeometrical description of CLIQUE block in data space
 Cpyclustering.cluster.bang.spatial_blockGeometrical description of BANG block in data space
 Cpyclustering.nnet.sync.sync_dynamicRepresents output dynamic of Sync
 Cpyclustering.nnet.sync.sync_visualizerVisualizer of output dynamic of sync network (Sync)
 Cpyclustering.nnet.syncsegm.syncsegmClass represents segmentation algorithm syncsegm
 Cpyclustering.nnet.syncsegm.syncsegm_analyserPerforms analysis of output dynamic of the double-layer oscillatory network 'syncsegm' to extract information about segmentation results
 Cpyclustering.nnet.syncsegm.syncsegm_visualizerResult visualizer of double-layer oscillatory network 'syncsegm'
 Cpyclustering.cluster.syncsom.syncsomClass represents clustering algorithm SYNC-SOM
 Cpyclustering.cluster.xmeans.xmeansClass represents clustering algorithm X-Means
 CIntEnum