Cpyclustering.cluster.agglomerative.agglomerative | Class represents agglomerative algorithm for cluster analysis |
Cpyclustering.samples.answer_reader | Answer reader for samples that are used by pyclustering library |
Cpyclustering.cluster.bang.bang | Class implements BANG grid based clustering algorithm |
Cpyclustering.cluster.bang.bang_animator | Provides service for creating 2-D animation using BANG clustering results |
Cpyclustering.cluster.bang.bang_block | BANG-block that represent spatial region in data space |
Cpyclustering.cluster.bang.bang_directory | BANG directory stores BANG-blocks that represents grid in data space |
Cpyclustering.cluster.bang.bang_visualizer | Visualizer of BANG algorithm's results |
Cpyclustering.cluster.birch.birch | Class represents the clustering algorithm BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) |
►Cpyclustering.cluster.bsas.bsas | Class represents BSAS clustering algorithm - basic sequential algorithmic scheme |
Cpyclustering.cluster.mbsas.mbsas | Class represents MBSAS (Modified Basic Sequential Algorithmic Scheme) |
Cpyclustering.cluster.ttsas.ttsas | Class represents TTSAS (Two-Threshold Sequential Algorithmic Scheme) |
Cpyclustering.cluster.bsas.bsas_visualizer | Visualizer of BSAS algorithm's results |
Cpyclustering.cluster.canvas_cluster_descr | Description of cluster for representation on canvas |
Cpyclustering.nnet.dynamic_visualizer.canvas_descr | Describes plot where dynamic is displayed |
Cpyclustering.nnet.hhn.central_element | Central element consist of two central neurons that are described by a little bit different dynamic than peripheral |
Cpyclustering.container.cftree.cfentry | Clustering feature representation |
►Cpyclustering.container.cftree.cfnode | Representation of node of CF-Tree |
Cpyclustering.container.cftree.leaf_node | Represents clustering feature leaf node |
Cpyclustering.container.cftree.non_leaf_node | Representation of clustering feature non-leaf node |
Cpyclustering.container.cftree.cftree | CF-Tree representation |
Cpyclustering.cluster.clarans.clarans | Class represents clustering algorithm CLARANS (a method for clustering objects for spatial data mining) |
Cpyclustering.cluster.clique.clique | Class implements CLIQUE grid based clustering algorithm |
Cpyclustering.cluster.clique.clique_block | CLIQUE block contains information about its logical location in grid, spatial location in data space and points that are covered by the block |
Cpyclustering.cluster.clique.clique_visualizer | Visualizer of CLIQUE algorithm's results |
Cpyclustering.cluster.encoder.cluster_encoder | Provides service to change clustering result representation |
Cpyclustering.cluster.cluster_visualizer | Common visualizer of clusters on 1D, 2D or 3D surface |
Cpyclustering.cluster.cluster_visualizer_multidim | Visualizer for cluster in multi-dimensional data |
Cpyclustering.nnet.cnn.cnn_dynamic | Container of output dynamic of the chaotic neural network where states of each neuron during simulation are stored |
Cpyclustering.nnet.cnn.cnn_network | Chaotic neural network based on system of logistic map where clustering phenomenon can be observed |
Cpyclustering.nnet.cnn.cnn_visualizer | Visualizer of output dynamic of chaotic neural network (CNN) |
Cpyclustering.utils.color.color | Consists titles of colors that are used by pyclustering for visualization |
Cpyclustering.cluster.clique.coordinate_iterator | Coordinate iterator is used to generate logical location description for each CLIQUE block |
Cpyclustering.cluster.cure.cure | Class represents clustering algorithm CURE with KD-tree optimization |
Cpyclustering.cluster.cure.cure_cluster | Represents data cluster in CURE term |
Cpyclustering.cluster.generator.data_generator | Data generator provides services to generate data with clusters with normal distribution |
Cpyclustering.cluster.dbscan.dbscan | Class represents clustering algorithm DBSCAN |
Cpyclustering.utils.metric.distance_metric | Distance metric performs distance calculation between two points in line with encapsulated function, for example, euclidean distance or chebyshev distance, or even user-defined |
Cpyclustering.gcolor.dsatur.dsatur | Represents DSATUR algorithm for graph coloring problem that uses greedy strategy |
Cpyclustering.nnet.dynamic_visualizer.dynamic_descr | Output dynamic description that used to display |
Cpyclustering.nnet.dynamic_visualizer.dynamic_visualizer | Basic output dynamic visualizer |
Cpyclustering.cluster.elbow.elbow | Class represents Elbow method that is used to find out appropriate amount of clusters in a dataset |
Cpyclustering.cluster.ema.ema | Expectation-Maximization clustering algorithm for Gaussian Mixture Model (GMM) |
Cpyclustering.cluster.ema.ema_initializer | Provides servies for preparing initial means and covariances for Expectation-Maximization algorithm |
Cpyclustering.cluster.ema.ema_observer | Observer of EM algorithm for collecting algorithm state on each step |
Cpyclustering.cluster.ema.ema_visualizer | Visualizer of EM algorithm's results |
Cpyclustering.cluster.fcm.fcm | Class represents Fuzzy C-means (FCM) clustering algorithm |
Cpyclustering.nnet.fsync.fsync_dynamic | Represents output dynamic of Sync in frequency domain |
Cpyclustering.nnet.fsync.fsync_visualizer | Visualizer of output dynamic of sync network in frequency domain |
Cpyclustering.cluster.ga.ga_observer | Genetic algorithm observer that is used to collect information about clustering process on each iteration |
Cpyclustering.cluster.ga.ga_visualizer | Genetic algorithm visualizer is used to show clustering results that are specific for this particular algorithm: clusters, evolution of global and local optimum |
Cpyclustering.cluster.ga.genetic_algorithm | Class represents Genetic clustering algorithm |
Cpyclustering.cluster.gmeans.gmeans | Class implements G-Means clustering algorithm |
Cpyclustering.utils.graph.graph | Graph representation |
Cpyclustering.nnet.hhn.hhn_parameters | Describes parameters of Hodgkin-Huxley Oscillatory Network |
►Cpyclustering.nnet.hysteresis.hysteresis_dynamic | Represents output dynamic of hysteresis oscillatory network |
Cpyclustering.gcolor.hysteresis.hysteresis_analyser | Performs analysis of output dynamic of the hysteresis oscillatory network to extract information about clusters or color allocation |
Cpyclustering.nnet.hysteresis.hysteresis_visualizer | Visualizer of output dynamic of hysteresis oscillatory network |
Cpyclustering.container.kdtree.kdtree | Represents KD Tree that is a space-partitioning data structure for organizing points in a k-dimensional space |
Cpyclustering.container.kdtree.kdtree_text_visualizer | KD-tree text visualizer that provides service to diplay tree structure using text representation |
Cpyclustering.cluster.kmeans.kmeans | Class implements K-Means clustering algorithm |
Cpyclustering.cluster.kmeans.kmeans_observer | Observer of K-Means algorithm that is used to collect information about clustering process on each iteration of the algorithm |
Cpyclustering.cluster.center_initializer.kmeans_plusplus_initializer | K-Means++ is an algorithm for choosing the initial centers for algorithms like K-Means or X-Means |
Cpyclustering.cluster.kmeans.kmeans_visualizer | Visualizer of K-Means algorithm's results |
Cpyclustering.cluster.kmedians.kmedians | Class represents clustering algorithm K-Medians |
Cpyclustering.cluster.kmedoids.kmedoids | Class represents clustering algorithm K-Medoids |
Cpyclustering.nnet.legion.legion_dynamic | Represents output dynamic of LEGION |
Cpyclustering.nnet.legion.legion_parameters | Describes parameters of LEGION |
►Cpyclustering.nnet.network | Common network description that consists of information about oscillators and connection between them |
Cpyclustering.nnet.fsync.fsync_network | Model of oscillatory network that uses Landau-Stuart oscillator and Kuramoto model as a synchronization mechanism |
Cpyclustering.nnet.hhn.hhn_network | Oscillatory Neural Network with central element based on Hodgkin-Huxley neuron model |
►Cpyclustering.nnet.hysteresis.hysteresis_network | Hysteresis oscillatory network that uses relaxation oscillators that are represented by objective hysteresis neurons whose output in range [-1, +1] |
Cpyclustering.gcolor.hysteresis.hysteresisgcolor | Class represents graph coloring algorithm based on hysteresis oscillatory network |
Cpyclustering.nnet.legion.legion_network | Local excitatory global inhibitory oscillatory network (LEGION) that uses relaxation oscillator based on Van der Pol model |
Cpyclustering.nnet.pcnn.pcnn_network | Model of oscillatory network that is based on the Eckhorn model |
►Cpyclustering.nnet.sync.sync_network | Model of oscillatory network that is based on the Kuramoto model of synchronization |
►Cpyclustering.cluster.syncnet.syncnet | Class represents clustering algorithm SyncNet |
Cpyclustering.cluster.hsyncnet.hsyncnet | Class represents clustering algorithm HSyncNet |
Cpyclustering.gcolor.sync.syncgcolor | Oscillatory network based on Kuramoto model with negative and positive connections for graph coloring problem |
Cpyclustering.nnet.syncpr.syncpr | Model of phase oscillatory network for pattern recognition that is based on the Kuramoto model |
Cpyclustering.container.kdtree.node | Represents node of KD-Tree |
Cpyclustering.cluster.optics.optics | Class represents clustering algorithm OPTICS (Ordering Points To Identify Clustering Structure) with KD-tree optimization (ccore options is supported) |
Cpyclustering.cluster.optics.optics_descriptor | Object description that used by OPTICS algorithm for cluster analysis |
Cpyclustering.nnet.sync.order_estimator | Provides services to calculate order parameter and local order parameter that are used for synchronization level estimation |
Cpyclustering.cluster.optics.ordering_analyser | Analyser of cluster ordering diagram |
Cpyclustering.cluster.optics.ordering_visualizer | Cluster ordering diagram visualizer that represents dataset graphically as density-based clustering structure |
Cpyclustering.nnet.pcnn.pcnn_dynamic | Represents output dynamic of PCNN (pulse-coupled neural network) |
Cpyclustering.nnet.pcnn.pcnn_parameters | Parameters for pulse coupled neural network |
Cpyclustering.nnet.pcnn.pcnn_visualizer | Visualizer of output dynamic of pulse-coupled neural network (PCNN) |
Cpyclustering.cluster.center_initializer.random_center_initializer | Random center initializer is for generation specified amount of random of centers for specified data |
Cpyclustering.cluster.rock.rock | Class represents clustering algorithm ROCK |
Cpyclustering.cluster.silhouette.silhouette | Represents Silhouette method that is used interpretation and validation of consistency |
Cpyclustering.cluster.silhouette.silhouette_ksearch | Represent algorithm for searching optimal number of clusters using specified K-algorithm (K-Means, K-Medians, K-Medoids) that is based on Silhouette method |
Cpyclustering.nnet.som.som | Represents self-organized feature map (SOM) |
Cpyclustering.nnet.som.som_parameters | Represents SOM parameters |
Cpyclustering.cluster.somsc.somsc | Class represents simple clustering algorithm based on self-organized feature map |
Cpyclustering.cluster.clique.spatial_block | Geometrical description of CLIQUE block in data space |
Cpyclustering.cluster.bang.spatial_block | Geometrical description of BANG block in data space |
►Cpyclustering.nnet.sync.sync_dynamic | Represents output dynamic of Sync |
Cpyclustering.cluster.syncnet.syncnet_analyser | Performs analysis of output dynamic of the oscillatory network syncnet to extract information about cluster allocation |
Cpyclustering.gcolor.sync.syncgcolor_analyser | Analyser of output dynamic of the oscillatory network syncgcolor |
Cpyclustering.nnet.syncpr.syncpr_dynamic | Represents output dynamic of syncpr (Sync for Pattern Recognition) |
►Cpyclustering.nnet.sync.sync_visualizer | Visualizer of output dynamic of sync network (Sync) |
Cpyclustering.cluster.syncnet.syncnet_visualizer | Visualizer of output dynamic of oscillatory network 'syncnet' for cluster analysis |
Cpyclustering.nnet.syncpr.syncpr_visualizer | Visualizer of output dynamic of syncpr network (Sync for Pattern Recognition) |
Cpyclustering.nnet.syncsegm.syncsegm | Class represents segmentation algorithm syncsegm |
Cpyclustering.nnet.syncsegm.syncsegm_analyser | Performs analysis of output dynamic of the double-layer oscillatory network 'syncsegm' to extract information about segmentation results |
Cpyclustering.nnet.syncsegm.syncsegm_visualizer | Result visualizer of double-layer oscillatory network 'syncsegm' |
Cpyclustering.cluster.syncsom.syncsom | Class represents clustering algorithm SYNC-SOM |
Cpyclustering.cluster.xmeans.xmeans | Class represents clustering algorithm X-Means |
►CIntEnum | |
Cpyclustering.cluster.agglomerative.type_link | Enumerator of types of link between clusters |
Cpyclustering.cluster.ema.ema_init_type | Enumeration of initialization types for Expectation-Maximization algorithm |
Cpyclustering.cluster.encoder.type_encoding | Enumeration of encoding types (index labeling, index list separation, object list separation) |
Cpyclustering.cluster.silhouette.silhouette_ksearch_type | Defines algorithms that can be used to find optimal number of cluster using Silhouette method |
Cpyclustering.cluster.xmeans.splitting_type | Enumeration of splitting types that can be used as splitting creation of cluster in X-Means algorithm |
Cpyclustering.container.cftree.cfnode_type | Enumeration of CF-Node types that are used by CF-Tree |
Cpyclustering.container.cftree.measurement_type | Enumeration of measurement types for CF-Tree |
Cpyclustering.nnet.cnn.type_conn | Enumeration of connection types for Chaotic Neural Network |
Cpyclustering.nnet.conn_represent | Enumerator of internal network connection representation between oscillators |
Cpyclustering.nnet.conn_type | Enumerator of connection types between oscillators |
Cpyclustering.nnet.initial_type | Enumerator of types of oscillator output initialization |
Cpyclustering.nnet.solve_type | Enumerator of solver types that are used for network simulation |
Cpyclustering.nnet.som.type_conn | Enumeration of connection types for SOM |
Cpyclustering.nnet.som.type_init | Enumeration of initialization types for SOM |
Cpyclustering.utils.graph.type_graph_descr | Enumeration of graph description |
Cpyclustering.utils.metric.type_metric | Enumeration of supported metrics in the module for distance calculation between two points |