3 @brief Utils that are used by modules of pyclustering. 5 @authors Andrei Novikov (pyclustering@yandex.ru) 7 @copyright GNU Public License 9 @cond GNU_PUBLIC_LICENSE 10 PyClustering is free software: you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation, either version 3 of the License, or 13 (at your option) any later version. 15 PyClustering is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. 30 from numpy
import array
34 except Exception
as error_instance:
35 warnings.warn(
"Impossible to import PIL (please, install 'PIL'), pyclustering's visualization " 36 "functionality is partially not available (details: '%s')." % str(error_instance))
39 import matplotlib.pyplot
as plt
40 from mpl_toolkits.mplot3d
import Axes3D
41 except Exception
as error_instance:
42 warnings.warn(
"Impossible to import matplotlib (please, install 'matplotlib'), pyclustering's visualization " 43 "functionality is not available (details: '%s')." % str(error_instance))
45 from sys
import platform
as _platform
56 @brief Returns data sample from simple text file. 57 @details This function should be used for text file with following format: 59 point_1_coord_1 point_1_coord_2 ... point_1_coord_n 60 point_2_coord_1 point_2_coord_2 ... point_2_coord_n 64 @param[in] filename (string): Path to file with data. 66 @return (list) Points where each point represented by list of coordinates. 70 file = open(filename,
'r') 72 sample = [[float(val) for val
in line.split()]
for line
in file
if len(line.strip()) > 0]
80 @brief Calculates distance matrix for data sample (sequence of points) using specified metric (by default Euclidean distance). 82 @param[in] sample (array_like): Data points that are used for distance calculation. 83 @param[in] metric (distance_metric): Metric that is used for distance calculation between two points. 85 @return (list) Matrix distance between data points. 89 amount_rows = len(sample)
90 return [[metric(sample[i], sample[j])
for j
in range(amount_rows)]
for i
in range(amount_rows)]
95 @brief Returns image as N-dimension (depends on the input image) matrix, where one element of list describes pixel. 97 @param[in] filename (string): Path to image. 99 @return (list) Pixels where each pixel described by list of RGB-values. 103 with Image.open(filename)
as image_source:
104 data = [list(pixel)
for pixel
in image_source.getdata()]
110 @brief Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel. 111 @details Luma coding is used for transformation and that is calculated directly from gamma-compressed primary intensities as a weighted sum: 113 \f[Y = 0.2989R + 0.587G + 0.114B\f] 115 @param[in] image_rgb_array (list): Image represented by RGB list. 117 @return (list) Image as gray colored matrix, where one element of list describes pixel. 120 colored_image = read_image(file_name); 121 gray_image = rgb2gray(colored_image); 128 image_gray_array = [0.0] * len(image_rgb_array)
129 for index
in range(0, len(image_rgb_array), 1):
130 image_gray_array[index] = float(image_rgb_array[index][0]) * 0.2989 \
131 + float(image_rgb_array[index][1]) * 0.5870 \
132 + float(image_rgb_array[index][2]) * 0.1140
134 return image_gray_array
139 @brief Returns stretched content as 1-dimension (gray colored) matrix with size of input image. 141 @param[in] image_source (Image): PIL Image instance. 143 @return (list, Image) Stretched image as gray colored matrix and source image. 146 wsize, hsize = image_source.size
150 image_source = image_source.crop((ws, hs, we, he))
153 image_source = image_source.resize((wsize, hsize), Image.ANTIALIAS)
156 data = [pixel
for pixel
in image_source.getdata()]
159 return image_pattern, image_source
164 @brief Returns coordinates of gray image content on the input image. 166 @param[in] image (Image): PIL Image instance that is processed. 168 @return (tuple) Returns coordinates of gray image content as (width_start, height_start, width_end, height_end). 172 width, height = image.size
176 height_start = height
180 for pixel
in image.getdata():
181 value = float(pixel[0]) * 0.2989 + float(pixel[1]) * 0.5870 + float(pixel[2]) * 0.1140
190 if width_start > col:
193 if height_start > row:
201 return width_start, height_start, width_end + 1, height_end + 1
206 @brief Returns average distance for establish links between specified number of nearest neighbors. 208 @param[in] points (list): Input data, list of points where each point represented by list. 209 @param[in] num_neigh (uint): Number of neighbors that should be used for distance calculation. 211 @return (double) Average distance for establish links between 'num_neigh' in data set 'points'. 215 if num_neigh > len(points) - 1:
216 raise NameError(
'Impossible to calculate average distance to neighbors ' 217 'when number of object is less than number of neighbors.')
219 dist_matrix = [[0.0
for i
in range(len(points))]
for _
in range(len(points))]
220 for i
in range(0, len(points), 1):
221 for j
in range(i + 1, len(points), 1):
223 dist_matrix[i][j] = distance
224 dist_matrix[j][i] = distance
226 dist_matrix[i] = sorted(dist_matrix[i])
229 for i
in range(0, len(points), 1):
231 for j
in range(0, num_neigh, 1):
232 total_distance += dist_matrix[i][j + 1]
234 return total_distance / (num_neigh * len(points))
237 def medoid(data, indexes=None, **kwargs):
239 @brief Calculate medoid for input points using Euclidean distance. 241 @param[in] data (list): Set of points for that median should be calculated. 242 @param[in] indexes (list): Indexes of input set of points that will be taken into account during median calculation. 243 @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric', 'data_type'). 245 <b>Keyword Args:</b><br> 246 - metric (distance_metric): Metric that is used for distance calculation between two points. 247 - data_type (string): Data type of input sample 'data' (available values: 'points', 'distance_matrix'). 249 @return (uint) index of point in input set that corresponds to median. 254 distance = float(
'Inf')
256 metric = kwargs.get(
'metric', type_metric.EUCLIDEAN_SQUARE)
257 data_type = kwargs.get(
'data_type',
'points')
259 if data_type ==
'points':
260 calculator =
lambda index1, index2: metric(data[index1], data[index2])
261 elif data_type ==
'distance_matrix':
262 if isinstance(data, numpy.matrix):
263 calculator =
lambda index1, index2: data.item(index1, index2)
266 calculator =
lambda index1, index2: data[index1][index2]
268 raise TypeError(
"Unknown type of data is specified '%s'." % data_type)
271 range_points = range(len(data))
273 range_points = indexes
275 for index_candidate
in range_points:
276 distance_candidate = 0.0
277 for index
in range_points:
278 distance_candidate += calculator(index_candidate, index)
280 if distance_candidate < distance:
281 distance = distance_candidate
282 index_median = index_candidate
289 @brief Calculate Euclidean distance between vector a and b. 290 @details The Euclidean between vectors (points) a and b is calculated by following formula: 293 dist(a, b) = \sqrt{ \sum_{i=0}^{N}(b_{i} - a_{i})^{2}) }; 296 Where N is a length of each vector. 298 @param[in] a (list): The first vector. 299 @param[in] b (list): The second vector. 301 @return (double) Euclidian distance between two vectors. 303 @note This function for calculation is faster then standard function in ~100 times! 308 return distance**(0.5);
313 @brief Calculate square Euclidian distance between vector a and b. 315 @param[in] a (list): The first vector. 316 @param[in] b (list): The second vector. 318 @return (double) Square Euclidian distance between two vectors. 322 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
326 for i
in range(0, len(a)):
327 distance += (a[i] - b[i])**2.0;
334 @brief Calculate Manhattan distance between vector a and b. 336 @param[in] a (list): The first cluster. 337 @param[in] b (list): The second cluster. 339 @return (double) Manhattan distance between two vectors. 343 if ( ((type(a) == float)
and (type(b) == float))
or ((type(a) == int)
and (type(b) == int)) ):
349 for i
in range(0, dimension):
350 distance += abs(a[i] - b[i]);
357 @brief Calculates average inter-cluster distance between two clusters. 358 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 359 or by list of indexes of points from the data (represented by list of points), in this case 360 data should be specified. 362 @param[in] cluster1 (list): The first cluster where each element can represent index from the data or object itself. 363 @param[in] cluster2 (list): The second cluster where each element can represent index from the data or object itself. 364 @param[in] data (list): If specified than elements of clusters will be used as indexes, 365 otherwise elements of cluster will be considered as points. 367 @return (double) Average inter-cluster distance between two clusters. 374 for i
in range(len(cluster1)):
375 for j
in range(len(cluster2)):
378 for i
in range(len(cluster1)):
379 for j
in range(len(cluster2)):
382 distance /= float(len(cluster1) * len(cluster2));
383 return distance ** 0.5;
388 @brief Calculates average intra-cluster distance between two clusters. 389 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 390 or by list of indexes of points from the data (represented by list of points), in this case 391 data should be specified. 393 @param[in] cluster1 (list): The first cluster. 394 @param[in] cluster2 (list): The second cluster. 395 @param[in] data (list): If specified than elements of clusters will be used as indexes, 396 otherwise elements of cluster will be considered as points. 398 @return (double) Average intra-cluster distance between two clusters. 404 for i
in range(len(cluster1) + len(cluster2)):
405 for j
in range(len(cluster1) + len(cluster2)):
408 if i < len(cluster1):
409 first_point = cluster1[i]
411 first_point = cluster2[i - len(cluster1)]
414 if j < len(cluster1):
415 second_point = cluster1[j]
417 second_point = cluster2[j - len(cluster1)]
421 if i < len(cluster1):
422 first_point = data[cluster1[i]]
424 first_point = data[cluster2[i - len(cluster1)]]
426 if j < len(cluster1):
427 second_point = data[cluster1[j]]
429 second_point = data[cluster2[j - len(cluster1)]]
433 distance /= float((len(cluster1) + len(cluster2)) * (len(cluster1) + len(cluster2) - 1.0))
434 return distance ** 0.5
439 @brief Calculates variance increase distance between two clusters. 440 @details Clusters can be represented by list of coordinates (in this case data shouldn't be specified), 441 or by list of indexes of points from the data (represented by list of points), in this case 442 data should be specified. 444 @param[in] cluster1 (list): The first cluster. 445 @param[in] cluster2 (list): The second cluster. 446 @param[in] data (list): If specified than elements of clusters will be used as indexes, 447 otherwise elements of cluster will be considered as points. 449 @return (double) Average variance increase distance between two clusters. 455 member_cluster1 = [0.0] * len(cluster1[0])
456 member_cluster2 = [0.0] * len(cluster2[0])
459 member_cluster1 = [0.0] * len(data[0])
460 member_cluster2 = [0.0] * len(data[0])
462 for i
in range(len(cluster1)):
468 for j
in range(len(cluster2)):
481 distance_general = 0.0
482 distance_cluster1 = 0.0
483 distance_cluster2 = 0.0
485 for i
in range(len(cluster1)):
494 for j
in range(len(cluster2)):
503 return distance_general - distance_cluster1 - distance_cluster2
508 @brief Calculates description of ellipse using covariance matrix. 510 @param[in] covariance (numpy.array): Covariance matrix for which ellipse area should be calculated. 511 @param[in] scale (float): Scale of the ellipse. 513 @return (float, float, float) Return ellipse description: angle, width, height. 517 eigh_values, eigh_vectors = numpy.linalg.eigh(covariance)
518 order = eigh_values.argsort()[::-1]
520 values, vectors = eigh_values[order], eigh_vectors[order]
521 angle = numpy.degrees(numpy.arctan2(*vectors[:,0][::-1]))
526 width, height = 2.0 * scale * numpy.sqrt(values)
527 return angle, width, height
532 @brief Finds maximum and minimum corner in each dimension of the specified data. 534 @param[in] data (list): List of points that should be analysed. 535 @param[in] data_filter (list): List of indexes of the data that should be analysed, 536 if it is 'None' then whole 'data' is analysed to obtain corners. 538 @return (list) Tuple of two points that corresponds to minimum and maximum corner (min_corner, max_corner). 542 dimensions = len(data[0])
546 bypass = range(len(data))
548 maximum_corner = list(data[bypass[0]][:])
549 minimum_corner = list(data[bypass[0]][:])
551 for index_point
in bypass:
552 for index_dimension
in range(dimensions):
553 if data[index_point][index_dimension] > maximum_corner[index_dimension]:
554 maximum_corner[index_dimension] = data[index_point][index_dimension]
556 if data[index_point][index_dimension] < minimum_corner[index_dimension]:
557 minimum_corner[index_dimension] = data[index_point][index_dimension]
559 return minimum_corner, maximum_corner
564 @brief Calculates norm of an input vector that is known as a vector length. 566 @param[in] vector (list): The input vector whose length is calculated. 568 @return (double) vector norm known as vector length. 573 for component
in vector:
574 length += component * component
576 length = length ** 0.5
583 @brief Calculates Heaviside function that represents step function. 584 @details If input value is greater than 0 then returns 1, otherwise returns 0. 586 @param[in] value (double): Argument of Heaviside function. 588 @return (double) Value of Heaviside function. 599 @brief Executes specified method or function with measuring of execution time. 601 @param[in] executable_function (pointer): Pointer to a function or method that should be called. 602 @param[in] *args: Arguments of the called function or method. 603 @param[in] **kwargs: Arbitrary keyword arguments of the called function or method. 605 @return (tuple) Execution time and result of execution of function or method (execution_time, result_execution). 609 time_start = time.perf_counter()
610 result = executable_function(*args, **kwargs)
611 time_end = time.perf_counter()
613 return time_end - time_start, result
618 @brief Extracts number of oscillations of specified oscillator. 620 @param[in] osc_dyn (list): Dynamic of oscillators. 621 @param[in] index (uint): Index of oscillator in dynamic. 622 @param[in] amplitude_threshold (double): Amplitude threshold when oscillation is taken into account, for example, 623 when oscillator amplitude is greater than threshold then oscillation is incremented. 625 @return (uint) Number of oscillations of specified oscillator. 629 number_oscillations = 0;
630 waiting_differential =
False;
631 threshold_passed =
False;
632 high_level_trigger =
True if (osc_dyn[0][index] > amplitude_threshold)
else False;
634 for values
in osc_dyn:
635 if ( (values[index] >= amplitude_threshold)
and (high_level_trigger
is False) ):
636 high_level_trigger =
True;
637 threshold_passed =
True;
639 elif ( (values[index] < amplitude_threshold)
and (high_level_trigger
is True) ):
640 high_level_trigger =
False;
641 threshold_passed =
True;
643 if (threshold_passed
is True):
644 threshold_passed =
False;
645 if (waiting_differential
is True and high_level_trigger
is False):
646 number_oscillations += 1;
647 waiting_differential =
False;
650 waiting_differential =
True;
652 return number_oscillations;
657 @brief Allocate clusters in line with ensembles of synchronous oscillators where each 658 synchronous ensemble corresponds to only one cluster. 660 @param[in] dynamic (dynamic): Dynamic of each oscillator. 661 @param[in] tolerance (double): Maximum error for allocation of synchronous ensemble oscillators. 662 @param[in] threshold (double): Amlitude trigger when spike is taken into account. 663 @param[in] ignore (bool): Set of indexes that shouldn't be taken into account. 665 @return (list) Grours (lists) of indexes of synchronous oscillators, for example, 666 [ [index_osc1, index_osc3], [index_osc2], [index_osc4, index_osc5] ]. 670 descriptors = [ []
for _
in range(len(dynamic[0])) ];
673 for index_dyn
in range(0, len(dynamic[0]), 1):
674 if ((ignore
is not None)
and (index_dyn
in ignore)):
677 time_stop_simulation = len(dynamic) - 1;
678 active_state =
False;
680 if (dynamic[time_stop_simulation][index_dyn] > threshold):
684 if (active_state
is True):
685 while ( (dynamic[time_stop_simulation][index_dyn] > threshold)
and (time_stop_simulation > 0) ):
686 time_stop_simulation -= 1;
689 if (time_stop_simulation == 0):
693 active_state =
False;
696 for t
in range(time_stop_simulation, 0, -1):
697 if ( (dynamic[t][index_dyn] > threshold)
and (active_state
is False) ):
700 elif ( (dynamic[t][index_dyn] < threshold)
and (active_state
is True) ):
702 active_state =
False;
706 if (desc == [0, 0, 0]):
709 desc[2] = desc[1] + (desc[0] - desc[1]) / 2.0;
710 descriptors[index_dyn] = desc;
715 desc_sync_ensembles = [];
717 for index_desc
in range(0, len(descriptors), 1):
718 if (descriptors[index_desc] == []):
721 if (len(sync_ensembles) == 0):
722 desc_ensemble = descriptors[index_desc];
723 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
725 desc_ensemble[0] = desc_ensemble[2] + reducer;
726 desc_ensemble[1] = desc_ensemble[2] - reducer;
728 desc_sync_ensembles.append(desc_ensemble);
729 sync_ensembles.append([ index_desc ]);
731 oscillator_captured =
False;
732 for index_ensemble
in range(0, len(sync_ensembles), 1):
733 if ( (desc_sync_ensembles[index_ensemble][0] > descriptors[index_desc][2])
and (desc_sync_ensembles[index_ensemble][1] < descriptors[index_desc][2])):
734 sync_ensembles[index_ensemble].append(index_desc);
735 oscillator_captured =
True;
738 if (oscillator_captured
is False):
739 desc_ensemble = descriptors[index_desc];
740 reducer = (desc_ensemble[0] - desc_ensemble[1]) * tolerance;
742 desc_ensemble[0] = desc_ensemble[2] + reducer;
743 desc_ensemble[1] = desc_ensemble[2] - reducer;
745 desc_sync_ensembles.append(desc_ensemble);
746 sync_ensembles.append([ index_desc ]);
748 return sync_ensembles;
751 def draw_clusters(data, clusters, noise = [], marker_descr = '.', hide_axes = False, axes = None, display_result = True):
753 @brief Displays clusters for data in 2D or 3D. 755 @param[in] data (list): Points that are described by coordinates represented. 756 @param[in] clusters (list): Clusters that are represented by lists of indexes where each index corresponds to point in data. 757 @param[in] noise (list): Points that are regarded to noise. 758 @param[in] marker_descr (string): Marker for displaying points. 759 @param[in] hide_axes (bool): If True - axes is not displayed. 760 @param[in] axes (ax) Matplotlib axes where clusters should be drawn, if it is not specified (None) then new plot will be created. 761 @param[in] display_result (bool): If specified then matplotlib axes will be used for drawing and plot will not be shown. 763 @return (ax) Matplotlib axes where drawn clusters are presented. 768 if ( (data
is not None)
and (clusters
is not None) ):
769 dimension = len(data[0]);
770 elif ( (data
is None)
and (clusters
is not None) ):
771 dimension = len(clusters[0][0]);
773 raise NameError(
'Data or clusters should be specified exactly.');
776 colors = [
'red',
'blue',
'darkgreen',
'brown',
'violet',
777 'deepskyblue',
'darkgrey',
'lightsalmon',
'deeppink',
'yellow',
778 'black',
'mediumspringgreen',
'orange',
'darkviolet',
'darkblue',
779 'silver',
'lime',
'pink',
'gold',
'bisque' ];
781 if (len(clusters) > len(colors)):
782 raise NameError(
'Impossible to represent clusters due to number of specified colors.');
788 if ((dimension) == 1
or (dimension == 2)):
789 axes = fig.add_subplot(111);
790 elif (dimension == 3):
791 axes = fig.gca(projection=
'3d');
793 raise NameError(
'Drawer supports only 2d and 3d data representation');
796 for cluster
in clusters:
797 color = colors[color_index];
801 axes.plot(item[0], 0.0, color = color, marker = marker_descr);
803 axes.plot(data[item][0], 0.0, color = color, marker = marker_descr);
807 axes.plot(item[0], item[1], color = color, marker = marker_descr);
809 axes.plot(data[item][0], data[item][1], color = color, marker = marker_descr);
811 elif (dimension == 3):
813 axes.scatter(item[0], item[1], item[2], c = color, marker = marker_descr);
815 axes.scatter(data[item][0], data[item][1], data[item][2], c = color, marker = marker_descr);
822 axes.plot(item[0], 0.0,
'w' + marker_descr);
824 axes.plot(data[item][0], 0.0,
'w' + marker_descr);
828 axes.plot(item[0], item[1],
'w' + marker_descr);
830 axes.plot(data[item][0], data[item][1],
'w' + marker_descr);
832 elif (dimension == 3):
834 axes.scatter(item[0], item[1], item[2], c =
'w', marker = marker_descr);
836 axes.scatter(data[item][0], data[item][1], data[item][2], c =
'w', marker = marker_descr);
840 if (hide_axes
is True):
841 axes.xaxis.set_ticklabels([]);
842 axes.yaxis.set_ticklabels([]);
845 axes.zaxis.set_ticklabels([]);
847 if (display_result
is True):
853 def draw_dynamics(t, dyn, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, separate = False, axes = None):
855 @brief Draw dynamics of neurons (oscillators) in the network. 856 @details It draws if matplotlib is not specified (None), othewise it should be performed manually. 858 @param[in] t (list): Values of time (used by x axis). 859 @param[in] dyn (list): Values of output of oscillators (used by y axis). 860 @param[in] x_title (string): Title for Y. 861 @param[in] y_title (string): Title for X. 862 @param[in] x_lim (double): X limit. 863 @param[in] y_lim (double): Y limit. 864 @param[in] x_labels (bool): If True - shows X labels. 865 @param[in] y_labels (bool): If True - shows Y labels. 866 @param[in] separate (list): Consists of lists of oscillators where each such list consists of oscillator indexes that will be shown on separated stage. 867 @param[in] axes (ax): If specified then matplotlib axes will be used for drawing and plot will not be shown. 869 @return (ax) Axes of matplotlib. 876 if (x_lim
is not None):
879 stage_xlim = [0, t[len(t) - 1]];
881 if ( (isinstance(separate, bool)
is True)
and (separate
is True) ):
882 if (isinstance(dyn[0], list)
is True):
883 number_lines = len(dyn[0]);
887 elif (isinstance(separate, list)
is True):
888 number_lines = len(separate);
893 dysplay_result =
False;
895 dysplay_result =
True;
896 (fig, axes) = plt.subplots(number_lines, 1);
899 if (isinstance(dyn[0], list)
is True):
900 num_items = len(dyn[0]);
901 for index
in range(0, num_items, 1):
902 y = [item[index]
for item
in dyn];
904 if (number_lines > 1):
908 if (isinstance(separate, bool)
is True):
911 elif (isinstance(separate, list)
is True):
912 for index_group
in range(0, len(separate), 1):
913 if (index
in separate[index_group]):
914 index_stage = index_group;
917 if (index_stage != -1):
918 if (index_stage != number_lines - 1):
919 axes[index_stage].get_xaxis().set_visible(
False);
921 axes[index_stage].plot(t, y,
'b-', linewidth = 0.5);
922 set_ax_param(axes[index_stage], x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
925 axes.plot(t, y,
'b-', linewidth = 0.5);
926 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
928 axes.plot(t, dyn,
'b-', linewidth = 0.5);
929 set_ax_param(axes, x_title, y_title, stage_xlim, y_lim, x_labels, y_labels,
True);
931 if (dysplay_result
is True):
937 def set_ax_param(ax, x_title = None, y_title = None, x_lim = None, y_lim = None, x_labels = True, y_labels = True, grid = True):
939 @brief Sets parameters for matplotlib ax. 941 @param[in] ax (Axes): Axes for which parameters should applied. 942 @param[in] x_title (string): Title for Y. 943 @param[in] y_title (string): Title for X. 944 @param[in] x_lim (double): X limit. 945 @param[in] y_lim (double): Y limit. 946 @param[in] x_labels (bool): If True - shows X labels. 947 @param[in] y_labels (bool): If True - shows Y labels. 948 @param[in] grid (bool): If True - shows grid. 951 from matplotlib.font_manager
import FontProperties;
952 from matplotlib
import rcParams;
954 if (_platform ==
"linux")
or (_platform ==
"linux2"):
955 rcParams[
'font.sans-serif'] = [
'Liberation Serif'];
957 rcParams[
'font.sans-serif'] = [
'Arial'];
959 rcParams[
'font.size'] = 12;
961 surface_font = FontProperties();
962 if (_platform ==
"linux")
or (_platform ==
"linux2"):
963 surface_font.set_name(
'Liberation Serif');
965 surface_font.set_name(
'Arial');
967 surface_font.set_size(
'12');
969 if (y_title
is not None): ax.set_ylabel(y_title, fontproperties = surface_font);
970 if (x_title
is not None): ax.set_xlabel(x_title, fontproperties = surface_font);
972 if (x_lim
is not None): ax.set_xlim(x_lim[0], x_lim[1]);
973 if (y_lim
is not None): ax.set_ylim(y_lim[0], y_lim[1]);
975 if (x_labels
is False): ax.xaxis.set_ticklabels([]);
976 if (y_labels
is False): ax.yaxis.set_ticklabels([]);
981 def draw_dynamics_set(dynamics, xtitle = None, ytitle = None, xlim = None, ylim = None, xlabels = False, ylabels = False):
983 @brief Draw lists of dynamics of neurons (oscillators) in the network. 985 @param[in] dynamics (list): List of network outputs that are represented by values of output of oscillators (used by y axis). 986 @param[in] xtitle (string): Title for Y. 987 @param[in] ytitle (string): Title for X. 988 @param[in] xlim (double): X limit. 989 @param[in] ylim (double): Y limit. 990 @param[in] xlabels (bool): If True - shows X labels. 991 @param[in] ylabels (bool): If True - shows Y labels. 995 number_dynamics = len(dynamics);
996 if (number_dynamics == 1):
997 draw_dynamics(dynamics[0][0], dynamics[0][1], xtitle, ytitle, xlim, ylim, xlabels, ylabels);
1000 number_cols = int(numpy.ceil(number_dynamics ** 0.5));
1001 number_rows = int(numpy.ceil(number_dynamics / number_cols));
1004 double_indexer =
True;
1005 if ( (number_cols == 1)
or (number_rows == 1) ):
1007 double_indexer =
False;
1009 (_, axarr) = plt.subplots(number_rows, number_cols);
1012 for dynamic
in dynamics:
1013 axarr[real_index] =
draw_dynamics(dynamic[0], dynamic[1], xtitle, ytitle, xlim, ylim, xlabels, ylabels, axes = axarr[real_index]);
1016 if (double_indexer
is True):
1017 real_index = real_index[0], real_index[1] + 1;
1018 if (real_index[1] >= number_cols):
1019 real_index = real_index[0] + 1, 0;
1028 @brief Shows image segments using colored image. 1029 @details Each color on result image represents allocated segment. The first image is initial and other is result of segmentation. 1031 @param[in] source (string): Path to image. 1032 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1033 consists of indexes of pixel from source image. 1034 @param[in] hide_axes (bool): If True then axes will not be displayed. 1038 image_source = Image.open(source);
1039 image_size = image_source.size;
1041 (fig, axarr) = plt.subplots(1, 2);
1043 plt.setp([ax
for ax
in axarr], visible =
False);
1045 available_colors = [ (0, 162, 232), (34, 177, 76), (237, 28, 36),
1046 (255, 242, 0), (0, 0, 0), (237, 28, 36),
1047 (255, 174, 201), (127, 127, 127), (185, 122, 87),
1048 (200, 191, 231), (136, 0, 21), (255, 127, 39),
1049 (63, 72, 204), (195, 195, 195), (255, 201, 14),
1050 (239, 228, 176), (181, 230, 29), (153, 217, 234),
1053 image_color_segments = [(255, 255, 255)] * (image_size[0] * image_size[1]);
1055 for index_segment
in range(len(clusters)):
1056 for index_pixel
in clusters[index_segment]:
1057 image_color_segments[index_pixel] = available_colors[index_segment];
1059 stage = array(image_color_segments, numpy.uint8);
1060 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),));
1061 image_cluster = Image.fromarray(stage,
'RGB');
1063 axarr[0].imshow(image_source, interpolation =
'none');
1064 axarr[1].imshow(image_cluster, interpolation =
'none');
1067 plt.setp(axarr[i], visible =
True);
1069 if (hide_axes
is True):
1070 axarr[i].xaxis.set_ticklabels([]);
1071 axarr[i].yaxis.set_ticklabels([]);
1072 axarr[i].xaxis.set_ticks_position(
'none');
1073 axarr[i].yaxis.set_ticks_position(
'none');
1080 @brief Shows image segments using black masks. 1081 @details Each black mask of allocated segment is presented on separate plot. 1082 The first image is initial and others are black masks of segments. 1084 @param[in] source (string): Path to image. 1085 @param[in] clusters (list): List of clusters (allocated segments of image) where each cluster 1086 consists of indexes of pixel from source image. 1087 @param[in] hide_axes (bool): If True then axes will not be displayed. 1090 if len(clusters) == 0:
1091 print(
"Warning: Nothing to draw - list of clusters is empty.")
1094 image_source = Image.open(source)
1095 image_size = image_source.size
1098 number_clusters = len(clusters) + 1
1100 number_cols = int(numpy.ceil(number_clusters ** 0.5))
1101 number_rows = int(numpy.ceil(number_clusters / number_cols))
1104 double_indexer =
True 1105 if (number_cols == 1)
or (number_rows == 1):
1107 double_indexer =
False 1109 (fig, axarr) = plt.subplots(number_rows, number_cols)
1110 plt.setp([ax
for ax
in axarr], visible=
False)
1112 axarr[real_index].imshow(image_source, interpolation=
'none')
1113 plt.setp(axarr[real_index], visible=
True)
1115 if hide_axes
is True:
1116 axarr[real_index].xaxis.set_ticklabels([])
1117 axarr[real_index].yaxis.set_ticklabels([])
1118 axarr[real_index].xaxis.set_ticks_position(
'none')
1119 axarr[real_index].yaxis.set_ticks_position(
'none')
1121 if double_indexer
is True:
1126 for cluster
in clusters:
1127 stage_cluster = [(255, 255, 255)] * (image_size[0] * image_size[1])
1128 for index
in cluster:
1129 stage_cluster[index] = (0, 0, 0)
1131 stage = array(stage_cluster, numpy.uint8)
1132 stage = numpy.reshape(stage, (image_size[1], image_size[0]) + ((3),))
1134 image_cluster = Image.fromarray(stage,
'RGB')
1136 axarr[real_index].imshow(image_cluster, interpolation =
'none')
1137 plt.setp(axarr[real_index], visible =
True)
1139 if hide_axes
is True:
1140 axarr[real_index].xaxis.set_ticklabels([])
1141 axarr[real_index].yaxis.set_ticklabels([])
1143 axarr[real_index].xaxis.set_ticks_position(
'none')
1144 axarr[real_index].yaxis.set_ticks_position(
'none')
1146 if double_indexer
is True:
1147 real_index = real_index[0], real_index[1] + 1
1148 if real_index[1] >= number_cols:
1149 real_index = real_index[0] + 1, 0
1158 @brief Returns the element's index at the left side from the right border with the same value as the 1159 last element in the range `sorted_data`. 1161 @details The element at the right is considered as target to search. `sorted_data` must 1162 be sorted collection. The complexity of the algorithm is `O(log(n))`. The 1163 algorithm is based on the binary search algorithm. 1165 @param[in] sorted_data: input data to find the element. 1166 @param[in] right: the index of the right element from that search is started. 1167 @param[in] comparator: comparison function object which returns `True` if the first argument 1168 is less than the second. 1170 @return The element's index at the left side from the right border with the same value as the 1171 last element in the range `sorted_data`. 1174 if len(sorted_data) == 0:
1175 raise ValueError(
"Input data is empty.")
1178 middle = (right - left) // 2
1179 target = sorted_data[right]
1182 if comparator(sorted_data[middle], target):
1187 offset = (right - left) // 2
1188 middle = left + offset
1195 @brief Calculates linear sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1197 @param[in] list_vector (list): Input vector. 1199 @return (list|double) Linear sum of vector that can be represented by list in case of multidimensional elements. 1204 list_representation = (type(list_vector[0]) == list)
1206 if list_representation
is True:
1207 dimension = len(list_vector[0])
1208 linear_sum = [0] * dimension
1210 for index_element
in range(0, len(list_vector)):
1211 if list_representation
is True:
1212 for index_dimension
in range(0, dimension):
1213 linear_sum[index_dimension] += list_vector[index_element][index_dimension]
1215 linear_sum += list_vector[index_element]
1222 @brief Calculates square sum of vector that is represented by list, each element can be represented by list - multidimensional elements. 1224 @param[in] list_vector (list): Input vector. 1226 @return (double) Square sum of vector. 1231 list_representation = (type(list_vector[0]) == list)
1233 for index_element
in range(0, len(list_vector)):
1234 if list_representation
is True:
1237 square_sum += list_vector[index_element] * list_vector[index_element]
1244 @brief Calculates subtraction of two lists. 1245 @details Each element from list 'a' is subtracted by element from list 'b' accordingly. 1247 @param[in] a (list): List of elements that supports mathematical subtraction. 1248 @param[in] b (list): List of elements that supports mathematical subtraction. 1250 @return (list) Results of subtraction of two lists. 1253 return [a[i] - b[i]
for i
in range(len(a))]
1258 @brief Calculates subtraction between list and number. 1259 @details Each element from list 'a' is subtracted by number 'b'. 1261 @param[in] a (list): List of elements that supports mathematical subtraction. 1262 @param[in] b (list): Value that supports mathematical subtraction. 1264 @return (list) Results of subtraction between list and number. 1267 return [a[i] - b
for i
in range(len(a))]
1272 @brief Addition of two lists. 1273 @details Each element from list 'a' is added to element from list 'b' accordingly. 1275 @param[in] a (list): List of elements that supports mathematic addition.. 1276 @param[in] b (list): List of elements that supports mathematic addition.. 1278 @return (list) Results of addtion of two lists. 1281 return [a[i] + b[i]
for i
in range(len(a))]
1286 @brief Addition between list and number. 1287 @details Each element from list 'a' is added to number 'b'. 1289 @param[in] a (list): List of elements that supports mathematic addition. 1290 @param[in] b (double): Value that supports mathematic addition. 1292 @return (list) Result of addtion of two lists. 1295 return [a[i] + b
for i
in range(len(a))]
1300 @brief Division between list and number. 1301 @details Each element from list 'a' is divided by number 'b'. 1303 @param[in] a (list): List of elements that supports mathematic division. 1304 @param[in] b (double): Value that supports mathematic division. 1306 @return (list) Result of division between list and number. 1309 return [a[i] / b
for i
in range(len(a))]
1314 @brief Division of two lists. 1315 @details Each element from list 'a' is divided by element from list 'b' accordingly. 1317 @param[in] a (list): List of elements that supports mathematic division. 1318 @param[in] b (list): List of elements that supports mathematic division. 1320 @return (list) Result of division of two lists. 1323 return [a[i] / b[i]
for i
in range(len(a))]
1328 @brief Multiplication between list and number. 1329 @details Each element from list 'a' is multiplied by number 'b'. 1331 @param[in] a (list): List of elements that supports mathematic division. 1332 @param[in] b (double): Number that supports mathematic division. 1334 @return (list) Result of division between list and number. 1337 return [a[i] * b
for i
in range(len(a))]
1342 @brief Multiplication of two lists. 1343 @details Each element from list 'a' is multiplied by element from list 'b' accordingly. 1345 @param[in] a (list): List of elements that supports mathematic multiplication. 1346 @param[in] b (list): List of elements that supports mathematic multiplication. 1348 @return (list) Result of multiplication of elements in two lists. 1351 return [a[i] * b[i]
for i
in range(len(a))]
def find_left_element(sorted_data, right, comparator)
Returns the element's index at the left side from the right border with the same value as the last el...
def euclidean_distance(a, b)
Calculate Euclidean distance between vector a and b.
def square_sum(list_vector)
Calculates square sum of vector that is represented by list, each element can be represented by list ...
def draw_clusters(data, clusters, noise=[], marker_descr='.', hide_axes=False, axes=None, display_result=True)
Displays clusters for data in 2D or 3D.
def heaviside(value)
Calculates Heaviside function that represents step function.
def manhattan_distance(a, b)
Calculate Manhattan distance between vector a and b.
def read_image(filename)
Returns image as N-dimension (depends on the input image) matrix, where one element of list describes...
Module provides various distance metrics - abstraction of the notion of distance in a metric space...
def timedcall(executable_function, args, kwargs)
Executes specified method or function with measuring of execution time.
def average_intra_cluster_distance(cluster1, cluster2, data=None)
Calculates average intra-cluster distance between two clusters.
def list_math_multiplication_number(a, b)
Multiplication between list and number.
def extract_number_oscillations(osc_dyn, index=0, amplitude_threshold=1.0)
Extracts number of oscillations of specified oscillator.
def list_math_division(a, b)
Division of two lists.
def list_math_multiplication(a, b)
Multiplication of two lists.
def allocate_sync_ensembles(dynamic, tolerance=0.1, threshold=1.0, ignore=None)
Allocate clusters in line with ensembles of synchronous oscillators where each synchronous ensemble c...
def average_neighbor_distance(points, num_neigh)
Returns average distance for establish links between specified number of nearest neighbors.
def average_inter_cluster_distance(cluster1, cluster2, data=None)
Calculates average inter-cluster distance between two clusters.
def read_sample(filename)
Returns data sample from simple text file.
def draw_image_color_segments(source, clusters, hide_axes=True)
Shows image segments using colored image.
def norm_vector(vector)
Calculates norm of an input vector that is known as a vector length.
def list_math_substraction_number(a, b)
Calculates subtraction between list and number.
def stretch_pattern(image_source)
Returns stretched content as 1-dimension (gray colored) matrix with size of input image...
def draw_dynamics_set(dynamics, xtitle=None, ytitle=None, xlim=None, ylim=None, xlabels=False, ylabels=False)
Draw lists of dynamics of neurons (oscillators) in the network.
def draw_dynamics(t, dyn, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, separate=False, axes=None)
Draw dynamics of neurons (oscillators) in the network.
def data_corners(data, data_filter=None)
Finds maximum and minimum corner in each dimension of the specified data.
def list_math_addition(a, b)
Addition of two lists.
def calculate_ellipse_description(covariance, scale=2.0)
Calculates description of ellipse using covariance matrix.
def euclidean_distance_square(a, b)
Calculate square Euclidian distance between vector a and b.
def gray_pattern_borders(image)
Returns coordinates of gray image content on the input image.
def list_math_division_number(a, b)
Division between list and number.
def linear_sum(list_vector)
Calculates linear sum of vector that is represented by list, each element can be represented by list ...
def medoid(data, indexes=None, kwargs)
Calculate medoid for input points using Euclidean distance.
def calculate_distance_matrix(sample, metric=distance_metric(type_metric.EUCLIDEAN))
Calculates distance matrix for data sample (sequence of points) using specified metric (by default Eu...
def set_ax_param(ax, x_title=None, y_title=None, x_lim=None, y_lim=None, x_labels=True, y_labels=True, grid=True)
Sets parameters for matplotlib ax.
def draw_image_mask_segments(source, clusters, hide_axes=True)
Shows image segments using black masks.
def list_math_subtraction(a, b)
Calculates subtraction of two lists.
def list_math_addition_number(a, b)
Addition between list and number.
def variance_increase_distance(cluster1, cluster2, data=None)
Calculates variance increase distance between two clusters.
def rgb2gray(image_rgb_array)
Returns image as 1-dimension (gray colored) matrix, where one element of list describes pixel...