elbow.py
1 """!
2 
3 @brief Elbow method to determine the optimal number of clusters for k-means clustering.
4 @details Implementation based on paper @cite article::cluster::elbow::1.
5 
6 @authors Andrei Novikov (pyclustering@yandex.ru)
7 @date 2014-2018
8 @copyright GNU Public License
9 
10 @cond GNU_PUBLIC_LICENSE
11  PyClustering is free software: you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation, either version 3 of the License, or
14  (at your option) any later version.
15 
16  PyClustering is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  GNU General Public License for more details.
20 
21  You should have received a copy of the GNU General Public License
22  along with this program. If not, see <http://www.gnu.org/licenses/>.
23 @endcond
24 
25 """
26 
27 
28 import math
29 
30 from pyclustering.cluster.kmeans import kmeans
31 from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer, random_center_initializer
32 from pyclustering.core.wrapper import ccore_library
33 
34 import pyclustering.core.elbow_wrapper as wrapper
35 
36 
37 class elbow:
38  """!
39  @brief Class represents Elbow method that is used to find out appropriate amount of clusters in a dataset.
40  @details Elbow method performs clustering using K-Means algorithm for each K and estimate clustering results using
41  sum of square erros. By default K-Means++ algorithm is used to calculate initial centers that are used by
42  K-Means algorithm.
43 
44  The Elbow is determined by max distance from each point (x, y) to segment from kmin-point (x0, y0) to kmax-point (x1, y1),
45  where 'x' is K (amount of clusters), and 'y' is within-cluster error. Following expression is used to calculate Elbow
46  length:
47  \f[Elbow_{k} = \frac{\left ( y_{0} - y_{1} \right )x_{k} + \left ( x_{1} - x_{0} \right )y_{k} + \left ( x_{0}y_{1} - x_{1}y_{0} \right )}{\sqrt{\left ( x_{1} - x_{0} \right )^{2} + \left ( y_{1} - y_{0} \right )^{2}}}\f]
48 
49  Usage example of Elbow method for cluster analysis:
50  @code
51  # read sample 'Simple3' from file (sample contains four clusters)
52  sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
53 
54  # create instance of Elbow method using K value from 1 to 10.
55  kmin, kmax = 1, 10
56  elbow_instance = elbow(sample, kmin, kmax)
57 
58  # process input data and obtain results of analysis
59  elbow_instance.process()
60  amount_clusters = elbow_instance.get_amount() # most probable amount of clusters
61  wce = elbow_instance.get_wce() # total within-cluster errors for each K
62 
63  # perform cluster analysis using K-Means algorithm
64  centers = kmeans_plusplus_initializer(sample, amount_clusters).initialize()
65  kmeans_instance = kmeans(sample, centers)
66  kmeans_instance.process()
67 
68  # obtain clustering results and visualize them
69  clusters = kmeans_instance.get_clusters()
70  centers = kmeans_instance.get_centers()
71  kmeans_visualizer.show_clusters(sample, clusters, centers)
72  @endcode
73 
74  By default Elbow uses K-Means++ initializer to calculate initial centers for K-Means algorithm, it can be changed
75  using argument 'initializer':
76  @code
77  # perform analysis using Elbow method with random center initializer for K-Means algorithm inside of the method.
78  kmin, kmax = 1, 10
79  elbow_instance = elbow(sample, kmin, kmax, initializer=random_center_initializer)
80  elbow_instance.process()
81  @endcode
82 
83  @image html elbow_example_simple_03.png "Elbows analysis with further K-Means clustering."
84 
85  """
86 
87  def __init__(self, data, kmin, kmax, **kwargs):
88  """!
89  @brief Construct Elbow method.
90 
91  @param[in] data (array_like): Input data that is presented as array of points (objects), each point should be represented by array_like data structure.
92  @param[in] kmin (int): Minimum amount of clusters that should be considered.
93  @param[in] kmax (int): Maximum amount of clusters that should be considered.
94  @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'ccore', 'initializer').
95 
96  <b>Keyword Args:</b><br>
97  - ccore (bool): If True then CCORE (C++ implementation of pyclustering library) is used (be default True).
98  - initializer (callable): Center initializer that is used by K-Means algorithm (by default K-Means++).
99 
100  """
101  if kmax - kmin < 3:
102  raise ValueError("Amount of K (" + str(kmax - kmin) + ") is too small for analysis. "
103  "It is require to have at least three K to build elbow.")
104 
105  if len(data) < kmax:
106  raise ValueError("K max value '%d' is greater than amount of points in data '%d'." % (kmax, len(data)))
107 
108  self.__initializer = kwargs.get('initializer', kmeans_plusplus_initializer)
109 
110  self.__ccore = kwargs.get('ccore', True) or \
111  isinstance(self.__initializer, kmeans_plusplus_initializer) or \
112  isinstance(self.__initializer, random_center_initializer)
113 
114  if self.__ccore:
115  self.__ccore = ccore_library.workable()
116 
117  self.__data = data
118  self.__kmin = kmin
119  self.__kmax = kmax
120 
121  self.__wce = []
122  self.__elbows = []
123  self.__kvalue = -1
124 
125 
126  def process(self):
127  """!
128  @brief Performs analysis to find out appropriate amount of clusters.
129 
130  """
131  if self.__ccore:
132  self.__process_by_ccore()
133  else:
134  self.__process_by_python()
135 
136 
137  def __process_by_ccore(self):
138  """!
139  @brief Performs processing using C++ implementation.
140 
141  """
142  if isinstance(self.__initializer, kmeans_plusplus_initializer):
143  initializer = wrapper.elbow_center_initializer.KMEANS_PLUS_PLUS
144  else:
145  initializer = wrapper.elbow_center_initializer.RANDOM
146 
147  result = wrapper.elbow(self.__data, self.__kmin, self.__kmax, initializer)
148 
149  self.__kvalue = result[0]
150  self.__wce = result[1]
151 
152 
153  def __process_by_python(self):
154  """!
155  @brief Performs processing using python implementation.
156 
157  """
158  for amount in range(self.__kmin, self.__kmax):
159  centers = self.__initializer(self.__data, amount).initialize()
160  instance = kmeans(self.__data, centers, ccore=True)
161  instance.process()
162 
163  self.__wce.append(instance.get_total_wce())
164 
165  self.__calculate_elbows()
166  self.__find_optimal_kvalue()
167 
168 
169  def get_amount(self):
170  """!
171  @brief Returns appropriate amount of clusters.
172 
173  """
174  return self.__kvalue
175 
176 
177  def get_wce(self):
178  """!
179  @brief Returns list of total within cluster errors for each K-value (kmin, kmin + 1, ..., kmax - 1).
180 
181  """
182 
183  return self.__wce
184 
185 
186  def __calculate_elbows(self):
187  """!
188  @brief Calculates potential elbows.
189  @details Elbow is calculated as a distance from each point (x, y) to segment from kmin-point (x0, y0) to kmax-point (x1, y1).
190 
191  """
192 
193  x0, y0 = 0.0, self.__wce[0]
194  x1, y1 = float(len(self.__wce)), self.__wce[-1]
195 
196  for index_elbow in range(1, len(self.__wce) - 1):
197  x, y = float(index_elbow), self.__wce[index_elbow]
198 
199  segment = abs((y0 - y1) * x + (x1 - x0) * y + (x0 * y1 - x1 * y0))
200  norm = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
201  distance = segment / norm
202 
203  self.__elbows.append(distance)
204 
205 
206  def __find_optimal_kvalue(self):
207  """!
208  @brief Finds elbow and returns corresponding K-value.
209 
210  """
211  optimal_elbow_value = max(self.__elbows)
212  self.__kvalue = self.__elbows.index(optimal_elbow_value) + 1 + self.__kmin
def __calculate_elbows(self)
Calculates potential elbows.
Definition: elbow.py:186
Cluster analysis algorithm: K-Means.
Definition: kmeans.py:1
def __process_by_python(self)
Performs processing using python implementation.
Definition: elbow.py:153
def __find_optimal_kvalue(self)
Finds elbow and returns corresponding K-value.
Definition: elbow.py:206
Class represents K-Means clustering algorithm.
Definition: kmeans.py:272
def __init__(self, data, kmin, kmax, kwargs)
Construct Elbow method.
Definition: elbow.py:87
def __process_by_ccore(self)
Performs processing using C++ implementation.
Definition: elbow.py:137
def process(self)
Performs analysis to find out appropriate amount of clusters.
Definition: elbow.py:126
Collection of center initializers for algorithm that uses initial centers, for example, for K-Means or X-Means.
Class represents Elbow method that is used to find out appropriate amount of clusters in a dataset...
Definition: elbow.py:37
def get_amount(self)
Returns appropriate amount of clusters.
Definition: elbow.py:169
def get_wce(self)
Returns list of total within cluster errors for each K-value (kmin, kmin + 1, ..., kmax - 1).
Definition: elbow.py:177